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ABSTRACT 
Haptic interaction in six degrees of freedom is critical to 
numerous applications, but is still prohibitively complex for 
realistic environments. This paper presents an approach to 
rendering six-degree-of-freedom contact among virtual objects 
using a novel data structure referred to as an implicit sphere tree. 
This data structure allows an extremely compact representation of 
volumetric objects and extremely rapid intersection testing among 
objects, which broadens the scope of virtual environments that can 
be rendered in six degrees of freedom at interactive rates.  We 
introduce this data structure, along with appropriate techniques for 
collision detection and haptic rendering, and demonstrate its 
efficiency in representing and manipulating complex models. 
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1 INTRODUCTION 
As haptic applications in virtual prototyping, medical simulation, 
and entertainment demand increasing immersiveness and realism, 
the perceptual limitations of three-degree-of-freedom (3-DOF) 
haptic rendering become increasingly problematic. Six-degree-of-
freedom (6-DOF) haptic rendering intrinsically provides increased 
realism for such applications (since real-world interactions 
typically use at least six degrees of freedom) and leverages the 
full capacity of haptic devices that can render force and torque 
simultaneously (e.g. [18],[5]).  However, this increased realism 
comes at a cost: 6-DOF rendering requires significantly more 
complex collision detection among virtual objects and 
fundamentally prevents the frequently-used approach of 
representing a haptic tool as a single point or as a small cluster of 
points [42]. 

To cope with this increased computational cost, many 
approaches to 6-DOF haptic rendering leverage voxel-based 
models as a fundamental representation, in contrast to the surface-
based (and generally polygon-based) models used to represent 
most objects in computer graphics and 3-DOF haptic rendering.  
Voxel-based rendering offers inherently more rapid collision tests 
among primitives. But again, this comes at a cost: in this case, 
voxel-based models are less accurate in representing object 
boundaries than surface models. However, this loss in accuracy 
can be mitigated to a nearly-arbitrary degree by maximizing the 
resolution of voxel-based models. Therefore, the goal of the 

present work, and previous work in 6-DOF haptic rendering, is to 
maximize the resolution of voxel-based objects that can be 
rendered interactively. 

This goal – processing increasingly complex volumetric 
geometry – also supports the growth in complexity and resolution 
of application-specific data sources that are supplying 
increasingly complex models to virtual environments. For 
example, the resolution of medical imaging devices continues to 
improve, so voxel-based anatomical models used for haptic 
surgical simulation continue to increase in complexity. Similarly, 
as haptic feedback becomes increasingly relevant for virtual 
prototyping and CAD applications [16], designers will need to 
represent increasingly complex parts – made up of numerous sub-
parts – if they are to make use of haptic simulation tools. 

Thus the goal of maximizing the complexity of voxel-based 
models that can be manipulated interactively improves both the 
general realism of haptic environments and the suitability of 
haptic simulation for specific applications. 

This paper therefore addresses the problem of 6-DOF 
manipulation of unconstrained rigid bodies represented as 
volumetric models. Our primary contributions are threefold: 
 

1) We introduce the implicit sphere tree, a novel data 
structure for representing volumetric models, and describe 
an optimized approach for building this data structure. 
 

2) We introduce collision-detection and force-rendering 
schemes that are suitable for interactive use of the implicit 
sphere tree. 

 
3) We present benchmarking results that demonstrate the 

computational efficiency of this data structure. 
 

In Section 2, we survey previous work related to 6-DOF haptic 
rendering, volumetric representations, and dynamic simulation. In 
Section 3, we describe the implicit sphere tree and our approach to 
interactive rendering. In Section 4, we present results 
demonstrating the computational efficiency of our approach. In 
Section 5, we discuss the relevance of this work and discuss future 
extensions. 

2 RELATED WORK 
In this section, we survey previous work on volumetric 
representation of objects (Section 2.1) and six-degree-of-freedom 
haptic simulation (Section 2.2), and place our own work within 
the context of the existing literature. 

2.1 Volumetric Models 
As we discuss above, volumetric models present an advantage 
over surface models for rapid intersection testing in complex 
virtual environments. In addition, volumetric models present an 
inherent advantage for representing objects when the interior of an 
object has information associated directly with it, e.g. vector fields 
or medical image data. 
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2.1.1 Basic voxel representations 
The most basic representation for a volume is the classic voxel 
array, in which each discrete spatial location has a one-bit label 
indicating the presence or absence of material. A slightly more 
detailed representation used in [25] includes a “Surface 
Descriptor” at each voxel, labeling each voxel as “empty”, “full”, 
“surface”, or “proximity”. A “surface voxel” is a full voxel that is 
near one or more empty voxels, and a “proximity voxel” is an 
empty voxel that is near a surface voxel. This additional 
representation, which can be encoded using only two bits per 
voxel, allows more sophisticated handling of the volume’s surface 
for collision-detection. 

Another frequently-used adaptation of the classic voxel array is 
the distance field, in which each voxel is labeled with the distance 
between that voxel and the nearest surface point. This allows 
rapid computation of local gradients, which can be used for 
optimizing collision detection and computing collision response 
forces [13]. 

2.1.2 Voxel storage mechanisms 
Independent of the data stored with each location in a voxel 
representation, the storage of voxel data can be classified roughly 
into approaches based on a uniform grid and approaches based on 
volume hierarchies.  

The uniform grid stores every voxel in the volume of an object 
using a tri-dimensional matrix or a hash table. Matrices are 
suitable for small objects and allow for extremely rapid data 
access, good spatial locality, and extremely rapid point-volume 
intersection tests. Hash tables or related indirect-access structures 
allow for a much more compact representation of sparse voxel 
arrays, but are more complex to address and manipulate, and can 
result in decreased cache performance relative to dense arrays 
when nearby voxels are accessed sequentially. 

Approaches based on volume hierarchies store volume 
information at multiple levels of detail for compactness and rapid 
intersection-testing. These approaches are generally adaptations of 
the classic octree, itself an adaptation of the classic n-ary tree, in 
which each node represents a cube in space and each child of a 
node, if present, represents additional detail within a subspace of 
that cube [41]. Although voxel-based representations typically 
suffer from inadequate detail around high-frequency surface 
features, octrees can be optimized with adaptive sampling [12] to 
provide additional information in such regions. Another variant of 
the octree is the generalized spatial tree, in which each cube is 
partitioned into a larger number of subspaces (typically 64, 256, 
etc.), which in some applications reduces access time by flattening 
the hierarchy [25]. 

The implicit sphere tree presented in this paper builds upon the 
Surface Descriptor and generalized octree presented in [25] and 
the octree-based collision detection tree presented in [39]. 

2.2 6-DOF Haptic Rendering 
Previous approaches to six-degree-of-freedom (6-DOF) haptic 
rendering can be classified into two main categories – direct 
rendering and virtual coupling – depending on the way they relate 
the physical position of the haptic device with the virtual position 
of the haptic interface point. 

2.2.1 Direct Rendering 
Direct rendering approaches (e.g. [14],[22],[20],[30]) to 6-DOF 
haptic rendering do not de-couple the physical device and virtual 
probe positions: the virtual haptic interface point is a simple linear 
transformation of the physical haptic device position. This 

guarantees that a user’s control of a virtual haptic probe is direct, 
intuitive, and without latency, but allows for a large penetration 
depth between the probe and objects in the virtual environment, 
potentially resulting in perceptual inaccuracy, reduced frame rate, 
and instability. 

2.2.2 Virtual Coupling 
In contrast, approaches to 6-DOF haptic rendering based on 
virtual coupling [6] use a dynamic simulation to compute the 
position of the virtual haptic probe based on the position of the 
physical haptic device. For example, a bi-directional spring is 
frequently used to simulate this coupling. This solution provides a 
much more stable response and maintains perceptual accuracy for 
graphic rendering, but it has the often-undesirable effect of 
smoothing the haptic feedback forces provided to the user. 

There are several more sophisticated dynamic simulation 
methods used for this coupling; we can classify them loosely as 
penalty-based, constraint-based, and impulse-based methods.  

Penalty-based methods (e.g. [7],[14],[24],[25],[29],[32],[39]) 
identify two discrete simulation states: contact and non-contact. 
Such approaches respond to the contact state – in which the 
virtual probe is immersed in another object in the virtual 
environment – with a force that is proportional to the penetration 
depth between the object and the stiffness of the materials. These 
approaches are suitable for haptics because they are 
computationally efficient, but limit the perceived stiffness of 
haptic interactions. The approach described in [17] uses the 
volume of intersection – instead of the penetration depth – for 
computing penalty forces. In [32], penalty-based approaches were 
extended to a multi-rate computation scheme to maintain haptic 
fidelity even during variable-rate collision detection. Penalty-
based approaches are also used for non-haptic dynamic simulation 
(e.g. [21],[24],[37]). 

Constraint-based methods (e.g. [3],[35]) represent objects or 
other environmental phenomena as analytic constraints, and 
typically integrate forces as necessary to ensure that those 
constraints are not violated. Work in this area has focused on 
schemes for smooth and variable-time integration and on real-time 
translation of analytic constraints into computationally-efficient 
penalty-based rendering schemes at the level of the haptic 
controller (e.g. [3],[33],[34],[35],[42]). Again, constraint-based 
methods for dynamic simulation have been used extensively 
outside of haptics, particularly in computer graphics (e.g. [1],[2]). 

Finally, impulse-based methods (e.g. [4],[8]) respond to 
collisions between a haptic probe and other objects in the virtual 
environment with an impulsive force intended to both simulate the 
interaction between rigid objects and eliminate penetration among 
objects. This problem has been explicitly addressed by the use of 
braking forces ([36],[25]), by an open-loop or event-based 
response ([11],[23]), or by a hybrid approach [9] that generates 
force pulses at the initial contact but uses a penalty-based 
response for the resting contact.  

In this work, an impulse-based method has been used for the 
resolution of contacts, as presented in Section 3.3. 

2.3 Summary of Related Work 
Figure 1 presents a subset of the broad hierarchy of techniques 
used for 6-DOF haptic rendering and volume modeling, 
particularly focusing on those approaches discussed in this 
section. This figure is intended to situate our work within this 
increasingly-complex research space and highlight the highest-
level design choices that guide our methods. 



3 METHODS 
This section introduces the implicit sphere tree (Section 3.1), the 
central data structure in the present work, then describes 
appropriate collision-detection (Section 3.2) and force 
computation (Section 3.3) approaches for working with implicit 
sphere trees. 

3.1 The Implicit Sphere Tree 
In section 2.1.2, we discuss the octree, a hierarchical series of 
cubes traditionally used for compactly representing complex 
objects. While this data structure is efficient, intersection testing 
among cubes is computationally expensive, relative to spheres, 
when working with objects at arbitrary rotations. The rotational 
invariance of the sphere makes it a particularly desirable geometry 
for bounding-volume hierarchies. Consequently, hierarchical 
sphere trees [19] have been explored in previous work as an 
alternative to octrees. However, sphere trees are much more 
complex to construct and manipulate than octrees, and suffer from 
much less efficient bounding of voxel arrays than octrees. 

The data structure presented here – the implicit sphere tree – 
combines the intersection-testing advantages of the sphere tree 
with the spatial efficiency of octrees by building a hierarchy of 
spheres directly from the nodes of an octree while traversing the 
tree for collision-detection, with minimal additional storage. 

The use of the implicit sphere tree begins with the construction 
of a traditional octree representation for an object of interest; each 

octree node stores – in addition to the traditional list of child-node 
pointers – the level L of the tree at which this node sits. A leaf 
node (typically a single voxel) is assigned a level L=0. Each node 
is assigned a level one greater than the level of its children, so – 
for example – the root of an octree containing 256 voxels per side 
has a level L=8. In practice, we need only store the level L of the 
root node of the octree. 

We build a standard octree [27] (enhanced by these node-level 
labels) and compute – from the known dimensions of the octree – 
the radius of the bounding sphere around the root of the tree 
(bounding the entire object). We note that for a cube of side x, this 
bounding sphere has a radius of x√3/2, and we can thus compute 
the radius of the sphere that bounds the root of the octree as: 

 
r0 = s2L-1/√3 

 
…where r0 is the radius of the bounding sphere at the root of the 
tree, s is the edge length of an individual voxel, and L is the node 
level of the root octree node. In the case of the generalized N-tree, 
this radius is s2N (L-1)/ √3, where N is 1 for the octree, 2 for the 64-
tree and 3 for the 512-tree. 

During the collision-detection process, as with traditional 
octree-based collision-detection, we will be descending the tree 
from the root to determine regions that merit further intersection 
testing (Section 3.2 will provide more detail on collision 
detection). As we descend the tree, choosing to descend to certain 
nodes in the octree, we compute the bounding spheres of each 

 
Figure 1. Situating our work (orange) among the methods and representations used in the literature for 6DOF haptic rendering (left) and
volumetric modeling (right). Work referenced elsewhere in this paper is cited here for context. 
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child of a given octree node by simply scaling the radius of the 
parent node’s bounding sphere by ½ and offsetting the current 
node’s bounding sphere center by s2L-2 along each axis, where s is 
the size of a voxel and L is the current octree level (which we 
know based on how many levels we’ve descended so far).  We 
thus implicitly compute the bounding sphere for each child node 
based only on very limited global storage (the number of levels in 
the octree) and on our real-time information about this node’s 
parent node. 

We can further optimize the computation of our implicit sphere 
tree when the octree (or the generalized n-tree) is not full, by 
computing a bounding sphere at each node that takes into account 
the real distribution of the children of the octree node. This 
optimization has the objective of reducing the volume of each 
sphere and thus reducing the number of collision tests necessary 
to eliminate intersection candidates. We can do this without 
complex computation at each node, leveraging the small set of 
possible bounding configurations that can exist at each level of an 
octree. In other words, there are only so many possible 
configurations of non-empty child nodes within an octree node, 
and therefore there are only so many possible bounding spheres 
needed to represent all possible child-node configurations. By pre-
computing this very limited set, and using a simple integer 
representation for each node in our octree, where each bit 
represents the presence or absence of a child node, we can 
compute a tight bounding sphere for an octree node by taking this 
integer representation and directly indexing into a table containing 
scale/offset information for all possible bounding spheres. 

Figure 2 demonstrates this principle in two dimensions for the 
quadtree (the two-dimensional equivalent of the octree). In the 
quadtree case, we would use four bits to represent the set of child 
nodes within each quadtree node. The case where no child nodes 
are present does not require further computation, since this node 
will never be a candidate for object intersections, so we have only 
fifteen possible arrangements of present/absent child nodes. As 
illustrated in Figure 2, three of these cases yield a bounding circle 
that is equivalent to the circle bounding the complete square, and 
each of the other twelve cases yields one of three other possible 
(smaller) bounding circles. For these twelve reduced-bounding-
circle cases, we can store a single, global table that contains the 
relative offset and scale of these bounding circles, which can be 
quickly looked up with a single integer-indexing operation. 

When we move to the octree we have 255 combinations, among 
which 85 yield bounding spheres that are smaller than the largest 
possible bounding sphere. Looking up the appropriate, optimized 

bounding sphere for an octree node proceeds exactly as in the 
quadtree case, making use of a single, global lookup table 
containing a scale and three-dimensional offset (relative to node 
centers) for each possible bounding sphere. 

3.2 Collision Detection for Implicit Sphere Trees 
Collision detection using the implicit sphere tree is similar to 
traditional collision detection using octrees; the sphere tree is used 
to greatly accelerate intersection testing by making all intersection 
tests rotationally-invariant. 

When we wish to determine whether two objects are 
intersecting, we begin with the root node of each object’s octree 
and, as described in Section 3.1, compute the two global bounding 
spheres in global coordinates, testing for intersection between 
those spheres using a simple distance/radius comparison. If the 
two root spheres intersect, we compute the bounding spheres at 
the next level of each octree, as described in Section 3.1. We note 
that computing the next level of bounding spheres is dependent on 
rotational state, since it involves offsetting each parent node’s 
center along each axis; however, we can take advantage of the fact 
that within an object, these axes do not change from level to level 
within the tree, and we can therefore simply compute these 
primary axes once per iteration of our program’s main simulation 
loop and scale them appropriately each time we descend the tree. 
Once we have computed these second-level bounding spheres for 
each root octree node, we test for intersections between the child-
node spheres of one octree with the root-node sphere of the other, 
and vice versa. Again, all computations can be performed without 
respect to the rotational state of each object using the rotationally-
invariant implicit sphere tree. 

If intersections are detected, we continue this process, 
descending the tree as needed until either all possible intersections 
are eliminated or leaf nodes (voxels) from each tree are found to 
intersect. As with any bounding volume hierarchy, the descent of 
the collision tree can be interrupted at a certain level when the 
number of generated collisions is too large or an application-
specific resolution limit is reached. Also, for applications that are 
interested specifically in intersections between surfaces and are 
able to assume a limited penetration depth among objects, it is 
possible to simplify collision detection by using only voxels 
labelled as “surface” voxels (using the Surface Descriptor 
approach presented in [25]), and building the octree (and thus the 
implicit sphere tree) such that it only contains nodes whose 
children ultimately contain surface voxels.  

In order to maximize the parallelism of our approach in 
environments with multiple processors, a breadth-first recursion is 
used. This allows each level to be assigned to an independent 
processor. This approach also allows the descent of the collision 
tree to be interrupted at a certain level when the number of 
generated collisions is too large. Otaduy and Lin [31] present a 
perceptually-derived metric for early termination of a collision 
search that maximally preserves haptic fidelity. 

3.3 Collision Response: Haptic Rendering with 
Implicit Sphere Trees 

This section describes our collision response algorithm, suitable 
for use with the implicit sphere tree presented above, and the 
overall structure of our 6-DOF haptic rendering algorithm. We 
follow the approach of [25] in assuming that the virtual 
environment is represented as a voxel model (the “world voxel 
model”). A finite set of samples points (the “point shell”) is used 
to represent the surface of a probe object (being controlled by a 
haptic device); this point shell is treated as a voxel array for 
purposes of collision detection. As in [25], we assume that the 

 
Figure 2. A two-dimensional quadtree is used to illustrate the finite
set of bounding circles that exist for an octree node, and the
dependence of those bounding circles on the empty/full state of
child nodes. Dotted lines indicate the largest possible bounding
circle; solid lines indicate optimized bounding circles. Dark child
nodes are empty, light (blue) nodes are full. 



world voxel model is static and the probe object is dynamic. 
Although the present work uses the voxel representation 

presented by McNeely et al., [25], our work differs from [25] both 
in terms of the collision detection scheme and the force 
computation scheme. In particular, our work has been designed to 
support multibody dynamics. 

3.3.1 Contact Resolution 
This work uses the implicit sphere tree described above to detect 
collisions between points in the point shell (the dynamic object) 
and voxels in the (static) world voxel model. Collisions detected 
in a single simulation time step are treated as having occurred 
simultaneously, as detecting the precise sequence of contact 
events would require a prohibitively-complex rewinding of the 
simulation whenever collisions occur. 

When collisions are detected, an impulse is applied to the probe 
object to eliminate penetration between the probe object and the 
world voxel model. We adapt the methods of [28] and [15] to 
compute this impulse, and we describe this adaptation here.  

The contact response system receives a list of intersecting voxel 
pairs; each pair is described by the two voxel centers, the normal 
at each voxel, the relative velocity of the intersecting voxels, and 
the penetration depth between the two voxels. The contact 
response system selects the colliding voxel pair that has the 
largest penetration depth, ignoring any contact pairs whose 
velocities would result in a resolution of the intersection in the 
next integration step. In other words, we do not apply impulses to 
resolve contacts that would be resolved in the next time step by 
inertia alone. When an intersecting voxel pair is selected, the 
contact response system resolves the contact using an impulse that 
imposes a separating velocity condition in the next integration 
step [2]. 

The impulse computed above will be applied to the object in a 
subsequent integration step, but other intersecting voxel pairs may 
still require resolution. Instead of immediately applying the 
computed impulse to the body and re-computing the set of 

intersecting voxel pairs, we continue to use the same set of 
intersecting voxel pairs but use the computed impulse to update 
the velocity of the body. This update allows us to discard most of 
the intersecting voxel pairs that are geometrically close to the one 
computed in the previous step, since those will now be resolved in 
the next integration step without an additional impulse, as 
described above. The system thus proceeds to the next intersecting 
voxel pair that would not now be separated in the subsequent 
integration step. This operation is repeated until there are no 
eligible intersecting voxel pairs, or until a maximum number of 
iterations is reached. The result of the collision response is the 
cumulative impulse, which is then applied to the probe object. 

The resulting impulsive forces are applied to the haptic device 
through virtual coupling [6]. At the cost of some damping, virtual 
coupling provides smoother, more stable haptic feedback than 
direct coupling, and allows force feedback computation to 
proceed at haptic rates even when collision detection and dynamic 
simulation are slowed by scene complexity. 

4 BENCHMARKING 
The algorithms described above have been implemented in C++ 
using the CHAI3D [10] open source haptics library. In this 
section, we present the results a series of benchmark tests applied 
to this implementation. Tests have been conducted with a 
Phantom Desktop haptic device on a Intel Core2 Quad running at 
2.4GHz with 4GB of memory under Windows XP. 

Our first benchmark assesses the impact of voxelization 
resolution on collision detection performance. For this evaluation, 
a simulation was repeated several times, identical in each case 
other than the resolution of the world voxel model. In this 
simulation, a model is moved along a trajectory toward another 
object; collision response forces are disabled. Figure 3 presents an 
analysis of this simulation. We highlight in particular that for a 
relatively high number of collisions (around 1000) the algorithm 
requires less than 1ms of computation time, allowing it to run 
within a typical haptic simulation timestep. We also note that the 
more complex simulation timesteps occurring toward the end of 

Figure 3. The relationship between collision detection performance
and the resolution of a volumetric model (collision response
disabled). Graphs show the distance between the centers of the
two voxel models being tested (upper-left), the number of contacts
detected between these objects (upper-right), the computation time
required for each simulation time step (lower-left), and the number
of intersection tests required at each simulation time step (lower-
right). 

Figure 4. The relationship between collision detection performance
and the resolution of a volumetric model (collision response
enabled). Graphs show the distance between the centers of the two
voxel models being tested (upper-left), the number of contacts
detected between these objects (upper-right), the computation time
required for each simulation time step (lower-left), and the number
of intersection tests required at each simulation time step (lower-
right). 



this simulation, which require more computation time, are not 
representative of typical interactive simulation timesteps, as 
collision response was disabled for this evaluation. Figure 4 
summarizes the results of the same analysis performed with 
collision response enabled. 

It is interesting to understand the effect of the optimizations 
discussed above, in particular the use of the one-child 
optimization for skipping intersection tests and the side 
optimization for adjusting the position. To assess the utility of 
these optimizations, we again simulate an approach between two 
voxel objects, in this case with a fixed size. The results of this 
analysis are illustrated in Figure 5. We highlight that the one-child 
optimization provides a significant performance benefit.  

The overall performance of the algorithms presented in this 
paper has been tested by generating random trajectories of 
collision between two objects. The large 6DOF search space has 
been randomly sampled using a sphere method [38]. One of the 
two models is fixed, and in each simulation the other object is 
moved along the randomly-generated trajectory. Each trajectory is 
a translation from an initial position randomly generated in 
spherical coordinates to a final position that has the same angular 
coordinates of the starting point but a radius that is known to 
result in contact between the simulated objects. The translating 
object is moved with constant velocity according to the method of 
[38]. The result of this evaluation is summarized in Figure 6.  

5 CONCLUSIONS 
The use of volumetric models for collision detection allows more 
complex objects to be simulated interactively, but requires 
specific collision detection schemes. In this paper, we have 
introduced the implicit sphere tree, a data structure that allows 
rapid intersection testing among complex voxel-based objects. 

Future work will focus on more sophisticated parallelization of 
the proposed approaches, particularly on implementing the 
proposed approach in massively-parallel computing environments 

such as GPUs.  Additional work will apply the sensation-
preserving optimizations presented in [31] to the implicit sphere 
tree. 
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