
Voxel-Based Haptic Rendering Using Implicit Sphere Trees

Emanuele Ruffaldi1 Dan Morris2 Federico Barbagli3 Ken Salisbury3 Massimo Bergamasco1

1Scuola Superiore S. Anna 2Microsoft Research 3Stanford University

ABSTRACT
Haptic interaction in six degrees of freedom is critical to
numerous applications, but is still prohibitively complex for
realistic environments. This paper presents an approach to
rendering six-degree-of-freedom contact among virtual objects
using a novel data structure referred to as an implicit sphere tree.
This data structure allows an extremely compact representation of
volumetric objects and extremely rapid intersection testing among
objects, which broadens the scope of virtual environments that can
be rendered in six degrees of freedom at interactive rates. We
introduce this data structure, along with appropriate techniques for
collision detection and haptic rendering, and demonstrate its
efficiency in representing and manipulating complex models.

KEYWORDS: haptics, collision detection, volumetric models

INDEX TERMS: H.5.2 [Information Interfaces and Presentation]:
User Interfaces — Haptic I/O; I.3.5 [Computer Graphics]:
Computational Geometry and Object Modeling — Geometric
algorithms, languages, and systems

1 INTRODUCTION
As haptic applications in virtual prototyping, medical simulation,
and entertainment demand increasing immersiveness and realism,
the perceptual limitations of three-degree-of-freedom (3-DOF)
haptic rendering become increasingly problematic. Six-degree-of-
freedom (6-DOF) haptic rendering intrinsically provides increased
realism for such applications (since real-world interactions
typically use at least six degrees of freedom) and leverages the
full capacity of haptic devices that can render force and torque
simultaneously (e.g. [18],[5]). However, this increased realism
comes at a cost: 6-DOF rendering requires significantly more
complex collision detection among virtual objects and
fundamentally prevents the frequently-used approach of
representing a haptic tool as a single point or as a small cluster of
points [42].

To cope with this increased computational cost, many
approaches to 6-DOF haptic rendering leverage voxel-based
models as a fundamental representation, in contrast to the surface-
based (and generally polygon-based) models used to represent
most objects in computer graphics and 3-DOF haptic rendering.
Voxel-based rendering offers inherently more rapid collision tests
among primitives. But again, this comes at a cost: in this case,
voxel-based models are less accurate in representing object
boundaries than surface models. However, this loss in accuracy
can be mitigated to a nearly-arbitrary degree by maximizing the
resolution of voxel-based models. Therefore, the goal of the

present work, and previous work in 6-DOF haptic rendering, is to
maximize the resolution of voxel-based objects that can be
rendered interactively.

This goal – processing increasingly complex volumetric
geometry – also supports the growth in complexity and resolution
of application-specific data sources that are supplying
increasingly complex models to virtual environments. For
example, the resolution of medical imaging devices continues to
improve, so voxel-based anatomical models used for haptic
surgical simulation continue to increase in complexity. Similarly,
as haptic feedback becomes increasingly relevant for virtual
prototyping and CAD applications [16], designers will need to
represent increasingly complex parts – made up of numerous sub-
parts – if they are to make use of haptic simulation tools.

Thus the goal of maximizing the complexity of voxel-based
models that can be manipulated interactively improves both the
general realism of haptic environments and the suitability of
haptic simulation for specific applications.

This paper therefore addresses the problem of 6-DOF
manipulation of unconstrained rigid bodies represented as
volumetric models. Our primary contributions are threefold:

1) We introduce the implicit sphere tree, a novel data
structure for representing volumetric models, and describe
an optimized approach for building this data structure.

2) We introduce collision-detection and force-rendering
schemes that are suitable for interactive use of the implicit
sphere tree.

3) We present benchmarking results that demonstrate the

computational efficiency of this data structure.

In Section 2, we survey previous work related to 6-DOF haptic
rendering, volumetric representations, and dynamic simulation. In
Section 3, we describe the implicit sphere tree and our approach to
interactive rendering. In Section 4, we present results
demonstrating the computational efficiency of our approach. In
Section 5, we discuss the relevance of this work and discuss future
extensions.

2 RELATED WORK
In this section, we survey previous work on volumetric
representation of objects (Section 2.1) and six-degree-of-freedom
haptic simulation (Section 2.2), and place our own work within
the context of the existing literature.

2.1 Volumetric Models
As we discuss above, volumetric models present an advantage
over surface models for rapid intersection testing in complex
virtual environments. In addition, volumetric models present an
inherent advantage for representing objects when the interior of an
object has information associated directly with it, e.g. vector fields
or medical image data.

.

Address correspondence to emanuele.ruffaldi@sssup.it .

2.1.1 Basic voxel representations
The most basic representation for a volume is the classic voxel
array, in which each discrete spatial location has a one-bit label
indicating the presence or absence of material. A slightly more
detailed representation used in [25] includes a “Surface
Descriptor” at each voxel, labeling each voxel as “empty”, “full”,
“surface”, or “proximity”. A “surface voxel” is a full voxel that is
near one or more empty voxels, and a “proximity voxel” is an
empty voxel that is near a surface voxel. This additional
representation, which can be encoded using only two bits per
voxel, allows more sophisticated handling of the volume’s surface
for collision-detection.

Another frequently-used adaptation of the classic voxel array is
the distance field, in which each voxel is labeled with the distance
between that voxel and the nearest surface point. This allows
rapid computation of local gradients, which can be used for
optimizing collision detection and computing collision response
forces [13].

2.1.2 Voxel storage mechanisms
Independent of the data stored with each location in a voxel
representation, the storage of voxel data can be classified roughly
into approaches based on a uniform grid and approaches based on
volume hierarchies.

The uniform grid stores every voxel in the volume of an object
using a tri-dimensional matrix or a hash table. Matrices are
suitable for small objects and allow for extremely rapid data
access, good spatial locality, and extremely rapid point-volume
intersection tests. Hash tables or related indirect-access structures
allow for a much more compact representation of sparse voxel
arrays, but are more complex to address and manipulate, and can
result in decreased cache performance relative to dense arrays
when nearby voxels are accessed sequentially.

Approaches based on volume hierarchies store volume
information at multiple levels of detail for compactness and rapid
intersection-testing. These approaches are generally adaptations of
the classic octree, itself an adaptation of the classic n-ary tree, in
which each node represents a cube in space and each child of a
node, if present, represents additional detail within a subspace of
that cube [41]. Although voxel-based representations typically
suffer from inadequate detail around high-frequency surface
features, octrees can be optimized with adaptive sampling [12] to
provide additional information in such regions. Another variant of
the octree is the generalized spatial tree, in which each cube is
partitioned into a larger number of subspaces (typically 64, 256,
etc.), which in some applications reduces access time by flattening
the hierarchy [25].

The implicit sphere tree presented in this paper builds upon the
Surface Descriptor and generalized octree presented in [25] and
the octree-based collision detection tree presented in [39].

2.2 6-DOF Haptic Rendering
Previous approaches to six-degree-of-freedom (6-DOF) haptic
rendering can be classified into two main categories – direct
rendering and virtual coupling – depending on the way they relate
the physical position of the haptic device with the virtual position
of the haptic interface point.

2.2.1 Direct Rendering
Direct rendering approaches (e.g. [14],[22],[20],[30]) to 6-DOF
haptic rendering do not de-couple the physical device and virtual
probe positions: the virtual haptic interface point is a simple linear
transformation of the physical haptic device position. This

guarantees that a user’s control of a virtual haptic probe is direct,
intuitive, and without latency, but allows for a large penetration
depth between the probe and objects in the virtual environment,
potentially resulting in perceptual inaccuracy, reduced frame rate,
and instability.

2.2.2 Virtual Coupling
In contrast, approaches to 6-DOF haptic rendering based on
virtual coupling [6] use a dynamic simulation to compute the
position of the virtual haptic probe based on the position of the
physical haptic device. For example, a bi-directional spring is
frequently used to simulate this coupling. This solution provides a
much more stable response and maintains perceptual accuracy for
graphic rendering, but it has the often-undesirable effect of
smoothing the haptic feedback forces provided to the user.

There are several more sophisticated dynamic simulation
methods used for this coupling; we can classify them loosely as
penalty-based, constraint-based, and impulse-based methods.

Penalty-based methods (e.g. [7],[14],[24],[25],[29],[32],[39])
identify two discrete simulation states: contact and non-contact.
Such approaches respond to the contact state – in which the
virtual probe is immersed in another object in the virtual
environment – with a force that is proportional to the penetration
depth between the object and the stiffness of the materials. These
approaches are suitable for haptics because they are
computationally efficient, but limit the perceived stiffness of
haptic interactions. The approach described in [17] uses the
volume of intersection – instead of the penetration depth – for
computing penalty forces. In [32], penalty-based approaches were
extended to a multi-rate computation scheme to maintain haptic
fidelity even during variable-rate collision detection. Penalty-
based approaches are also used for non-haptic dynamic simulation
(e.g. [21],[24],[37]).

Constraint-based methods (e.g. [3],[35]) represent objects or
other environmental phenomena as analytic constraints, and
typically integrate forces as necessary to ensure that those
constraints are not violated. Work in this area has focused on
schemes for smooth and variable-time integration and on real-time
translation of analytic constraints into computationally-efficient
penalty-based rendering schemes at the level of the haptic
controller (e.g. [3],[33],[34],[35],[42]). Again, constraint-based
methods for dynamic simulation have been used extensively
outside of haptics, particularly in computer graphics (e.g. [1],[2]).

Finally, impulse-based methods (e.g. [4],[8]) respond to
collisions between a haptic probe and other objects in the virtual
environment with an impulsive force intended to both simulate the
interaction between rigid objects and eliminate penetration among
objects. This problem has been explicitly addressed by the use of
braking forces ([36],[25]), by an open-loop or event-based
response ([11],[23]), or by a hybrid approach [9] that generates
force pulses at the initial contact but uses a penalty-based
response for the resting contact.

In this work, an impulse-based method has been used for the
resolution of contacts, as presented in Section 3.3.

2.3 Summary of Related Work
Figure 1 presents a subset of the broad hierarchy of techniques
used for 6-DOF haptic rendering and volume modeling,
particularly focusing on those approaches discussed in this
section. This figure is intended to situate our work within this
increasingly-complex research space and highlight the highest-
level design choices that guide our methods.

3 METHODS
This section introduces the implicit sphere tree (Section 3.1), the
central data structure in the present work, then describes
appropriate collision-detection (Section 3.2) and force
computation (Section 3.3) approaches for working with implicit
sphere trees.

3.1 The Implicit Sphere Tree
In section 2.1.2, we discuss the octree, a hierarchical series of
cubes traditionally used for compactly representing complex
objects. While this data structure is efficient, intersection testing
among cubes is computationally expensive, relative to spheres,
when working with objects at arbitrary rotations. The rotational
invariance of the sphere makes it a particularly desirable geometry
for bounding-volume hierarchies. Consequently, hierarchical
sphere trees [19] have been explored in previous work as an
alternative to octrees. However, sphere trees are much more
complex to construct and manipulate than octrees, and suffer from
much less efficient bounding of voxel arrays than octrees.

The data structure presented here – the implicit sphere tree –
combines the intersection-testing advantages of the sphere tree
with the spatial efficiency of octrees by building a hierarchy of
spheres directly from the nodes of an octree while traversing the
tree for collision-detection, with minimal additional storage.

The use of the implicit sphere tree begins with the construction
of a traditional octree representation for an object of interest; each

octree node stores – in addition to the traditional list of child-node
pointers – the level L of the tree at which this node sits. A leaf
node (typically a single voxel) is assigned a level L=0. Each node
is assigned a level one greater than the level of its children, so –
for example – the root of an octree containing 256 voxels per side
has a level L=8. In practice, we need only store the level L of the
root node of the octree.

We build a standard octree [27] (enhanced by these node-level
labels) and compute – from the known dimensions of the octree –
the radius of the bounding sphere around the root of the tree
(bounding the entire object). We note that for a cube of side x, this
bounding sphere has a radius of x√3/2, and we can thus compute
the radius of the sphere that bounds the root of the octree as:

r0 = s2L-1/√3

…where r0 is the radius of the bounding sphere at the root of the
tree, s is the edge length of an individual voxel, and L is the node
level of the root octree node. In the case of the generalized N-tree,
this radius is s2N (L-1)/ √3, where N is 1 for the octree, 2 for the 64-
tree and 3 for the 512-tree.

During the collision-detection process, as with traditional
octree-based collision-detection, we will be descending the tree
from the root to determine regions that merit further intersection
testing (Section 3.2 will provide more detail on collision
detection). As we descend the tree, choosing to descend to certain
nodes in the octree, we compute the bounding spheres of each

Figure 1. Situating our work (orange) among the methods and representations used in the literature for 6DOF haptic rendering (left) and
volumetric modeling (right). Work referenced elsewhere in this paper is cited here for context.

6DOF Haptic

Rigid Body
Simulation

Stability

Force Feedback

Constraint-based

Penalty-based

Impulsive

Direct Rendering

Virtual Coupling

Contact
Resolution

Collsion
Propagation

Simultaneous

Chronological

Volume Modeling

Storage

Information

Collision

Polygonization

Uniform

Octree

Labeling

Distance

Discreet

Continuous

Point Sampling

Hierarchical

Voxelization

Marching Cubes

Marching

Scan Line

Binary

Surface Type

[Gregory 2000]

[Colgate 1997]

[Colgate 1995]

[McNeely 1999]

[Ruspini 2000]

[Berkelman 1999]

[Guendelman 2003]

[Westermann 1999]

[McNeely 1999]

[Frisken 2000]

[McNeely 1999]

[Constantinescu 2004]
[Mirtich 1994]

[Gregory 2000]

[Kim 2003]

[Meagher 1982]

[Fuhrmann 2003]

child of a given octree node by simply scaling the radius of the
parent node’s bounding sphere by ½ and offsetting the current
node’s bounding sphere center by s2L-2 along each axis, where s is
the size of a voxel and L is the current octree level (which we
know based on how many levels we’ve descended so far). We
thus implicitly compute the bounding sphere for each child node
based only on very limited global storage (the number of levels in
the octree) and on our real-time information about this node’s
parent node.

We can further optimize the computation of our implicit sphere
tree when the octree (or the generalized n-tree) is not full, by
computing a bounding sphere at each node that takes into account
the real distribution of the children of the octree node. This
optimization has the objective of reducing the volume of each
sphere and thus reducing the number of collision tests necessary
to eliminate intersection candidates. We can do this without
complex computation at each node, leveraging the small set of
possible bounding configurations that can exist at each level of an
octree. In other words, there are only so many possible
configurations of non-empty child nodes within an octree node,
and therefore there are only so many possible bounding spheres
needed to represent all possible child-node configurations. By pre-
computing this very limited set, and using a simple integer
representation for each node in our octree, where each bit
represents the presence or absence of a child node, we can
compute a tight bounding sphere for an octree node by taking this
integer representation and directly indexing into a table containing
scale/offset information for all possible bounding spheres.

Figure 2 demonstrates this principle in two dimensions for the
quadtree (the two-dimensional equivalent of the octree). In the
quadtree case, we would use four bits to represent the set of child
nodes within each quadtree node. The case where no child nodes
are present does not require further computation, since this node
will never be a candidate for object intersections, so we have only
fifteen possible arrangements of present/absent child nodes. As
illustrated in Figure 2, three of these cases yield a bounding circle
that is equivalent to the circle bounding the complete square, and
each of the other twelve cases yields one of three other possible
(smaller) bounding circles. For these twelve reduced-bounding-
circle cases, we can store a single, global table that contains the
relative offset and scale of these bounding circles, which can be
quickly looked up with a single integer-indexing operation.

When we move to the octree we have 255 combinations, among
which 85 yield bounding spheres that are smaller than the largest
possible bounding sphere. Looking up the appropriate, optimized

bounding sphere for an octree node proceeds exactly as in the
quadtree case, making use of a single, global lookup table
containing a scale and three-dimensional offset (relative to node
centers) for each possible bounding sphere.

3.2 Collision Detection for Implicit Sphere Trees
Collision detection using the implicit sphere tree is similar to
traditional collision detection using octrees; the sphere tree is used
to greatly accelerate intersection testing by making all intersection
tests rotationally-invariant.

When we wish to determine whether two objects are
intersecting, we begin with the root node of each object’s octree
and, as described in Section 3.1, compute the two global bounding
spheres in global coordinates, testing for intersection between
those spheres using a simple distance/radius comparison. If the
two root spheres intersect, we compute the bounding spheres at
the next level of each octree, as described in Section 3.1. We note
that computing the next level of bounding spheres is dependent on
rotational state, since it involves offsetting each parent node’s
center along each axis; however, we can take advantage of the fact
that within an object, these axes do not change from level to level
within the tree, and we can therefore simply compute these
primary axes once per iteration of our program’s main simulation
loop and scale them appropriately each time we descend the tree.
Once we have computed these second-level bounding spheres for
each root octree node, we test for intersections between the child-
node spheres of one octree with the root-node sphere of the other,
and vice versa. Again, all computations can be performed without
respect to the rotational state of each object using the rotationally-
invariant implicit sphere tree.

If intersections are detected, we continue this process,
descending the tree as needed until either all possible intersections
are eliminated or leaf nodes (voxels) from each tree are found to
intersect. As with any bounding volume hierarchy, the descent of
the collision tree can be interrupted at a certain level when the
number of generated collisions is too large or an application-
specific resolution limit is reached. Also, for applications that are
interested specifically in intersections between surfaces and are
able to assume a limited penetration depth among objects, it is
possible to simplify collision detection by using only voxels
labelled as “surface” voxels (using the Surface Descriptor
approach presented in [25]), and building the octree (and thus the
implicit sphere tree) such that it only contains nodes whose
children ultimately contain surface voxels.

In order to maximize the parallelism of our approach in
environments with multiple processors, a breadth-first recursion is
used. This allows each level to be assigned to an independent
processor. This approach also allows the descent of the collision
tree to be interrupted at a certain level when the number of
generated collisions is too large. Otaduy and Lin [31] present a
perceptually-derived metric for early termination of a collision
search that maximally preserves haptic fidelity.

3.3 Collision Response: Haptic Rendering with
Implicit Sphere Trees

This section describes our collision response algorithm, suitable
for use with the implicit sphere tree presented above, and the
overall structure of our 6-DOF haptic rendering algorithm. We
follow the approach of [25] in assuming that the virtual
environment is represented as a voxel model (the “world voxel
model”). A finite set of samples points (the “point shell”) is used
to represent the surface of a probe object (being controlled by a
haptic device); this point shell is treated as a voxel array for
purposes of collision detection. As in [25], we assume that the

Figure 2. A two-dimensional quadtree is used to illustrate the finite
set of bounding circles that exist for an octree node, and the
dependence of those bounding circles on the empty/full state of
child nodes. Dotted lines indicate the largest possible bounding
circle; solid lines indicate optimized bounding circles. Dark child
nodes are empty, light (blue) nodes are full.

world voxel model is static and the probe object is dynamic.
Although the present work uses the voxel representation

presented by McNeely et al., [25], our work differs from [25] both
in terms of the collision detection scheme and the force
computation scheme. In particular, our work has been designed to
support multibody dynamics.

3.3.1 Contact Resolution
This work uses the implicit sphere tree described above to detect
collisions between points in the point shell (the dynamic object)
and voxels in the (static) world voxel model. Collisions detected
in a single simulation time step are treated as having occurred
simultaneously, as detecting the precise sequence of contact
events would require a prohibitively-complex rewinding of the
simulation whenever collisions occur.

When collisions are detected, an impulse is applied to the probe
object to eliminate penetration between the probe object and the
world voxel model. We adapt the methods of [28] and [15] to
compute this impulse, and we describe this adaptation here.

The contact response system receives a list of intersecting voxel
pairs; each pair is described by the two voxel centers, the normal
at each voxel, the relative velocity of the intersecting voxels, and
the penetration depth between the two voxels. The contact
response system selects the colliding voxel pair that has the
largest penetration depth, ignoring any contact pairs whose
velocities would result in a resolution of the intersection in the
next integration step. In other words, we do not apply impulses to
resolve contacts that would be resolved in the next time step by
inertia alone. When an intersecting voxel pair is selected, the
contact response system resolves the contact using an impulse that
imposes a separating velocity condition in the next integration
step [2].

The impulse computed above will be applied to the object in a
subsequent integration step, but other intersecting voxel pairs may
still require resolution. Instead of immediately applying the
computed impulse to the body and re-computing the set of

intersecting voxel pairs, we continue to use the same set of
intersecting voxel pairs but use the computed impulse to update
the velocity of the body. This update allows us to discard most of
the intersecting voxel pairs that are geometrically close to the one
computed in the previous step, since those will now be resolved in
the next integration step without an additional impulse, as
described above. The system thus proceeds to the next intersecting
voxel pair that would not now be separated in the subsequent
integration step. This operation is repeated until there are no
eligible intersecting voxel pairs, or until a maximum number of
iterations is reached. The result of the collision response is the
cumulative impulse, which is then applied to the probe object.

The resulting impulsive forces are applied to the haptic device
through virtual coupling [6]. At the cost of some damping, virtual
coupling provides smoother, more stable haptic feedback than
direct coupling, and allows force feedback computation to
proceed at haptic rates even when collision detection and dynamic
simulation are slowed by scene complexity.

4 BENCHMARKING
The algorithms described above have been implemented in C++
using the CHAI3D [10] open source haptics library. In this
section, we present the results a series of benchmark tests applied
to this implementation. Tests have been conducted with a
Phantom Desktop haptic device on a Intel Core2 Quad running at
2.4GHz with 4GB of memory under Windows XP.

Our first benchmark assesses the impact of voxelization
resolution on collision detection performance. For this evaluation,
a simulation was repeated several times, identical in each case
other than the resolution of the world voxel model. In this
simulation, a model is moved along a trajectory toward another
object; collision response forces are disabled. Figure 3 presents an
analysis of this simulation. We highlight in particular that for a
relatively high number of collisions (around 1000) the algorithm
requires less than 1ms of computation time, allowing it to run
within a typical haptic simulation timestep. We also note that the
more complex simulation timesteps occurring toward the end of

Figure 3. The relationship between collision detection performance
and the resolution of a volumetric model (collision response
disabled). Graphs show the distance between the centers of the
two voxel models being tested (upper-left), the number of contacts
detected between these objects (upper-right), the computation time
required for each simulation time step (lower-left), and the number
of intersection tests required at each simulation time step (lower-
right).

Figure 4. The relationship between collision detection performance
and the resolution of a volumetric model (collision response
enabled). Graphs show the distance between the centers of the two
voxel models being tested (upper-left), the number of contacts
detected between these objects (upper-right), the computation time
required for each simulation time step (lower-left), and the number
of intersection tests required at each simulation time step (lower-
right).

this simulation, which require more computation time, are not
representative of typical interactive simulation timesteps, as
collision response was disabled for this evaluation. Figure 4
summarizes the results of the same analysis performed with
collision response enabled.

It is interesting to understand the effect of the optimizations
discussed above, in particular the use of the one-child
optimization for skipping intersection tests and the side
optimization for adjusting the position. To assess the utility of
these optimizations, we again simulate an approach between two
voxel objects, in this case with a fixed size. The results of this
analysis are illustrated in Figure 5. We highlight that the one-child
optimization provides a significant performance benefit.

The overall performance of the algorithms presented in this
paper has been tested by generating random trajectories of
collision between two objects. The large 6DOF search space has
been randomly sampled using a sphere method [38]. One of the
two models is fixed, and in each simulation the other object is
moved along the randomly-generated trajectory. Each trajectory is
a translation from an initial position randomly generated in
spherical coordinates to a final position that has the same angular
coordinates of the starting point but a radius that is known to
result in contact between the simulated objects. The translating
object is moved with constant velocity according to the method of
[38]. The result of this evaluation is summarized in Figure 6.

5 CONCLUSIONS
The use of volumetric models for collision detection allows more
complex objects to be simulated interactively, but requires
specific collision detection schemes. In this paper, we have
introduced the implicit sphere tree, a data structure that allows
rapid intersection testing among complex voxel-based objects.

Future work will focus on more sophisticated parallelization of
the proposed approaches, particularly on implementing the
proposed approach in massively-parallel computing environments

such as GPUs. Additional work will apply the sensation-
preserving optimizations presented in [31] to the implicit sphere
tree.

ACKNOWLEDGMENTS
This work was supported by NIH LM07295, BioX 2DMA178,
and by the European Commission within the Enactive Network of
Excellence.

REFERENCES
[1] D. Baraff. Analytical Methods for Dynamic Simulation of Non-

penetrating Rigid Bodies. Proc SIGGRAPH 1989.
[2] D. Baraff. Fast Contact Force Computation for Non-penetrating

Rigid Bodies. Proc SIGGRAPH 1994.
[3] P. Berkelman, R. Hollis, and D. Baraff. Interaction with a Realtime

Dynamic Environment Simulation using a Magnetic Levitation
Haptic Interface Device. Proc ICRA 1999.

[4] B. Chang and J. Colgate. Real-time Impulse-Based Simulation of
Rigid Body Systems for Haptic Display. Proc ASME Dynamic
Systems and Control Division, 1997.

[5] E. Chen. Six Degree-of-Freedom Haptic System for Desktop Virtual
Prototyping Applications. Proc First Intl Workshop on Virtual
Reality and Prototyping, 1999.

[6] J. Colgate, M. Stanley, and J. Brown. Issues in the haptic display of
tool use. Proc Intl Conf on Intelligent Robots and Systems, 1995.

[7] J. Colgate and G. Schenkel. Passivity of a class of sampled-data
systems: application to haptic interfaces. Journal of Robotic Systems,
v14.1, 1997.

[8] D. Constantinescu, S. Salcudean, and E. Croft. Impulsive Forces for
Haptic Rendering of Rigid Contacts. Proc Intl Symp on Robotics,
2004.

[9] D. Constantinescu, S. Salcudean, and E. Croft. Haptic Rendering of
Rigid Contacts Using Impulsive and Penalty Forces. IEEE Trans on
Robotics, 21(3):309–323, 2005.

Figure 6. Performance evaluation of collision response generated
by random trajectories. Individual simulations are represented with a
constant color. Graphs show the distance between the centers of
the two voxel models being tested (upper-left), the number of
contacts detected between these objects (upper-right), the
computation time required for each simulation time step (lower-left),
and the number of intersection tests required at each simulation
time step (lower-right).

Figure 5. The impact of the “one-child” and “side” optimizations
(discussed in Section 3) on collision detection performance.
Graphs show the distance between the centers of the two voxel
models being tested (upper-left), the number of contacts detected
between these objects (upper-right), the computation time
required for each simulation time step (lower-left), and the number
of intersection tests required at each simulation time step (lower-
right).

[10] F. Conti, F. Barbagli, D. Morris, and C. Sewell. CHAI: An Open-
Source Library for the Rapid Development of Haptic Scenes. Demo
paper presented at IEEE World Haptics, March 2005.

[11] J. Fiene, K. J. Kuchenbecker, and G. Niemeyer. Event-based haptics
with grip force compensation. Proc IEEE Haptic Symposium, 2006.

[12] S. F. Frisken, R. N. Perry, A. P. Rockwood, and T. R. Jones.
Adaptively sampled distance fields: A general representation of
shape for computer graphics. Proc Intl conf on Computer Graphics
and Interactive Techniques, 2000.

[13] A. Fuhrmann, G. Sobottka, and C. Gross. Distance fields for rapid
collision detection in physically based modeling. GraphiCon 2003.

[14] A. Gregory A. Mascarenhas, S. Ehmann, M. Lin, and D. Manocha.
Six Degree-of-Freedom Haptic Display of Polygonal Models. In
Proc IEEE Visualization 2000.

[15] E. Guendelman, R. Bridson, and R. Fedkiw. Nonconvex Rigid
Bodies with Stacking. ACM Trans on Graphics, 22(3):871–878,
2003.

[16] R. Gupta, D. Whitney, and D. Zeltzer. Prototyping and Design for
Assembly Analysis using Multimodal Virtual Environments.
Computer-Aided Design, 29(8):585–597, 1997.

[17] S. Hasegawa, N. Fujii, Y. Koike, and M. Sato. Real-time Rigid Body
Simulation Based on Volumetric Penalty Method. Proc IEEE
Haptics Symposium, 2003.

[18] V. Hayward et al. Freedom-7: A high fidelity seven axis haptic
device with application to surgical training. In Experimental
Robotics V, Lecture Notes in Control and Information Science 232,
pages 445–456, 1998.

[19] P. M. Hubbard. Approximating Polyhedra with Spheres for Time-
Critical Collision Detection. ACM Trans on Graphics, 15(3):179–
210, 1996.

[20] D. E. Johnson and P. Willemsen. Accelerated Haptic Rendering of
Polygonal Models through Local Descent. Proc IEEE Haptics
Symposium, 2004.

[21] H. Keller, H. Stolz, A. Ziegler, and T. Bräunl. Virtual Mechanics -
Simulation and Animation of Rigid Body Systems. Technical Report
University of Stuttgart Technical Report TR-1993-08, 1993.

[22] Y. J. Kim, M. A. Otaduy, M. C. Lin, and D. Manocha. Six-degree-
of-freedom Haptic Rendering using Incremental and Localized
Computations. Presence, 12(3):277–295, 2003.

[23] K. J. Kuchenbecker, J. Fiene, and G. Niemeyer. Event-based Haptics
and Acceleration Matching: Portraying and Assessing the Realism of
Contact. Proc Word Haptics 2005.

[24] M. McKenna and D. Zeltzer. Dynamic simulation of autonomous
legged locomotion. Proc SIGGRAPH 1990.

[25] W. McNeely, K. Puterbaugh, and J.J. Troy. Six degree-of-freedom
haptic rendering using voxel sampling. Proc SIGGRAPH 1999.

[26] W. McNeely , K. Puterbaugh, and J.J. Troy. Voxel-Based 6-DOF
Haptic Rendering Improvements. Haptics-e, 3,7, 2006.

[27] D. Meagher. Geometric Modeling using Octree Encoding. Computer
Graphics and Image Processing, 19(2):129–147, June 1982.

[28] B. Mirtich and J. F. Canny. Impulse-based Dynamic Simulation.
Proc Workshop on Algorithmic Foundations of Robotics, 1994.

[29] M. Moore and J. Wilhelms. Collision Detection and Response for
Computer Animation. Proc SIGGRAPH 1988.

[30] D. Nelson, D. Johnson, and E. Cohen. Haptic rendering of surface-
to-surface sculpted model interaction. Proc IEEE Haptics
Symposium, 1999.

[31] M. Otaduy and M. Lin. Sensation preserving simplification for
haptic rendering. Proc SIGGRAPH 2003.

[32] M. Otaduy and M. Lin. Stable and Responsive Six-Degree-of-
Freedom Haptic Manipulation Using Implicit Integration. Proc IEEE
WorldHaptics 2005.

[33] D. Ruspini, K. Kolarov, and O. Khatib. The haptic display of
complex graphical environments. Proc SIGGRAPH 1997.

[34] D. Ruspini and O. Khatib. Dynamic Models for Haptic Rendering
Systems. In Advances in Robot Kinematics (ARK) 1998.

[35] D. Ruspini and O. Khatib. A framework for multi-contact multi-
body dynamic simulation and haptic display. Proc Intl Conf on
Intelligent Robots and Systems, 2000.

[36] S. Salcudean and T. Vlaar. On the Emulation of Stiff Walls and
Static Friction with a Magnetically Levitated Input/Output Device.
Proc ASME Haptics Symposium, 1997.

[37] D. Terzopoulos, J. Platt, A. Barr, and K. Fleischer. Elastically
Deformable Models. Proc SIGGRAPH 1987.

[38] S. Trenkel, R. Weller, and G. Zachmann. A Benchmarking Suite for
Static Collision Detection Algorithms. In Proc of the Intl Conf in
Central Europe on Computer Graphics, Visualization and Computer
Visiion (WSCG), January 2007.

[39] C. Tzafestas and P. Coiffet. Real-Time Collision Detection using
Spherical Octrees: Virtual Reality Application. 5th IEEE Intl
Workshop on Robot and Human Communication, 1996.

[40] M. Wan and W.A. McNeely. Quasi-static approximation for 6
degrees-of-freedom haptic rendering. Proc IEEE Visualization 2003.

[41] R. Westermann, L. Kobbelt, and T. Ertl. Real-time exploration of
regular volume data by adaptive reconstruction of isosurfaces. The
Visual Computer, 15(2):100–111, 1999.

[42] C. B. Zilles and J. K. Salisbury. A constraint-based god-object
method for haptic display. Proc Intl Conf on Intelligent Robots and
Systems, 1995.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00000
 /EncodeColorImages false
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 1200
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00000
 /EncodeGrayImages false
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00000
 /EncodeMonoImages true
 /MonoImageFilter /FlateEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [1200 1200]
 /PageSize [612.000 792.000]
>> setpagedevice

