
2543

Physiological Measurement

A combined segmenting and  
non-segmenting approach to signal 
quality estimation for ambulatory 
photoplethysmography

J D Wander1,2 and D Morris1

1 Microsoft Research, One Microsoft way, Redmond, WA 98052, USA
2 Department of Bioengineering, University of Washington, 3720 15th Ave NE, 
Seattle, WA 98105, USA

E-mail: jdwander@uw.edu

Received 17 February 2014, revised 31 July 2014
Accepted for publication 8 August 2014
Published 19 November 2014

Abstract
Continuous cardiac monitoring of healthy and unhealthy patients can help 
us understand the progression of heart disease and enable early treatment. 
Optical pulse sensing is an excellent candidate for continuous mobile 
monitoring of cardiovascular health indicators, but optical pulse signals are 
susceptible to corruption from a number of noise sources, including motion 
artifact. Therefore, before higher-level health indicators can be reliably 
computed, corrupted data must be separated from valid data. This is an 
especially difficult task in the presence of artifact caused by ambulation (e.g. 
walking or jogging), which shares significant spectral energy with the true 
pulsatile signal. In this manuscript, we present a machine-learning-based 
system for automated estimation of signal quality of optical pulse signals 
that performs well in the presence of periodic artifact. We hypothesized that 
signal processing methods that identified individual heart beats (segmenting 
approaches) would be more error-prone than methods that did not (non-
segmenting approaches) when applied to data contaminated by periodic 
artifact. We further hypothesized that a fusion of segmenting and non-
segmenting approaches would outperform either approach alone. Therefore, 
we developed a novel non-segmenting approach to signal quality estimation 
that we then utilized in combination with a traditional segmenting approach. 
Using this system we were able to robustly detect differences in signal quality 
as labeled by expert human raters (Pearson’s r = 0.9263). We then validated 
our original hypotheses by demonstrating that our non-segmenting approach 
outperformed the segmenting approach in the presence of contaminated 
signal, and that the combined system outperformed either individually. Lastly, 
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as an example, we demonstrated the utility of our signal quality estimation 
system in evaluating the trustworthiness of heart rate measurements derived 
from optical pulse signals.

Keywords: photoplethysmography, machine learning, signal quality index, 
heart rate, digital signal processing, pulse oximeter

(Some figures may appear in colour only in the online journal)

1. Introduction

Cardiovascular disease is one of the leading causes of mortality in both the United States 
(Hoyert et al 2012) and the European Union (Eurostat 2009). In the U.S. it accounts for over a 
half-million deaths and nearly a half-trillion dollars annually (CDC 2012). As physical activ-
ity (along with diet management) can dramatically reduce the risk of most cardiovascular 
conditions (CDC 2013), current guidelines from European health authorities stress prevention 
of these conditions before they become clinical emergencies (Mancia et al 2013). Monitoring 
of heart rate (HR) during and after exercise can allow for measurement of caloric expenditure 
(Ceesay et al 1989) and recovery rate (Cole et al 1999), and a number of cardiac rehabilita-
tion protocols require consistent, dependable monitoring of heart-rate during exercise (Taylor 
et al 2004, Leon et al 2005). Most importantly, self-monitoring of health data such as HR is 
positively associated with improved healthy behavior (Fox and Duggan 2013). In addition to 
the individual health benefits, crowd-sourced collection of data from commercially available 
HR monitors presents a tremendous opportunity for epidemiologic study of risk factors, early 
symptoms, and progression of cardiovascular disease.

The current consumer standard for HR monitoring is the two-electrode chest strap, which 
is commonly used among fitness enthusiasts and elite athletes seeking to optimize training, 
but is too cumbersome and uncomfortable for full-time use. Recently, optical HR meas-
urement at the wrist has emerged as an alternative. This technique leverages the fact that 
blood pulsing through the wrist changes the way light is absorbed by the tissue. Several 
commercial devices (MIO Alpha, mioglobal.com; Basis health tracker, mybasis.com) utilize 
this technology to provide continuous HR measurement. However, the accuracy of this 
technology relative to the gold standard of HR monitoring—the electrocardiogram—is still 
being evaluated (Schäfer and Vagedes 2013); ambient light and non-pulse-related blood 
movement tremendously distort the signal (Asada et al 2003). This is particularly true dur-
ing motion (e.g. exercise), when artifact can make the pulse nearly indistinguishable from 
noise (Rhee et al 2001).

Use of optical pulse measurement—or the photoplethysmograph (PPG)—has until recently 
been limited to clinical environments where patients are generally sedentary, and trained per-
sonnel are on hand to manually determine the quality of the signals being recorded and adjust 
the recording equipment if necessary. This model of expert equipment and data management 
is unfortunately not scalable beyond the current application of PPG-based cardiac monitoring 
in staffed care centers, an obstacle that must be overcome for the development of ubiquitous 
PPG-based cardiac health monitoring. The high volumes of data generated in such a model 
cannot feasibly be hand-annotated for usable and unusable data, so a dependable measure of 
signal quality—a signal quality index (SQI)—is essential for assessing the trustworthiness of 
derived cardiac health metrics.

Furthermore, the nature of disturbances to the PPG signal changes dramatically when the 
devices are worn by mobile users. Repetitive motion artifact generated by ambulation, changes 

http://www.mioglobal.com
http://www.mybasis.com
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in ambient light conditions, and environmental noise can all drastically impact quality of the 
recorded PPG. Computationally-determined SQIs have shown excellent promise in identify-
ing contaminated periods in clinical PPG, but the majority of these approaches require the 
successful segmentation of the optical signal into individual beats (Weng et al 2005, Farooq 
et al 2010, Karlen et al 2012a 2012b). Such approaches may be confounded when the artifact 
to be identified is similar (quasi-periodic with a similar fundamental frequency) to the pulsa-
tile signal of interest.

The primary aim of the work described below was to develop a system capable of success-
fully performing signal quality estimation in ambulatory settings. We hypothesized that such 
a system would benefit from employing both segmenting and non-segmenting approaches to 
signal quality estimation. Additionally, we wanted to understand which predictors of signal 
quality were most robust under ambulatory circumstances. Lastly, we wanted to validate our 
signal quality estimation algorithm for use in a common application: HR estimation.

2. Background and previous work

2.1. Photoplethysmography

The term photoplethysmography (PPG) spans two classes of measurement devices—trans-
missive and reflective—both of which measure the quantity of light from one or more light 
emitting diodes that is not absorbed by the tissue and fluid through which the light passes. 
Transmissive PPG measures the light transmitted through a part of the body—typically a 
finger, toe, or earlobe—to a sensor on the other side of that tissue. Reflective PPG uses a 
photosensor that is co-located with the light source(s), and measures the light that is reflected 
back toward the source. Though transmissive PPG is much more common in clinical practice, 
all wrist-worn consumer-grade PPG-based HR monitors use the reflective approach. From a 
signal processing perspective, transmissive and reflective PPG are quite similar, though it has 
been observed that reflective PPG is more susceptible to motion artifact (Asada et al 2003).

The quantity of non-absorbed light that contributes to the PPG signal depends on the travel 
path, the optical density of the tissue, the volume of blood in the tissue, and the composition of 
the blood (Mannheimer 2007). Assuming travel path and optical tissue density to be constant, 
the PPG waveform can then be used to extract signals like HR and saturation of peripheral 
oxygen (SpO2), as well as further derivative signals such as heart rate variability (HRV), res-
piratory rate (Nilsson et al 2000), and arterial wall stiffness (Smith et al 1999).

2.2. Artifact in the PPG signal

PPG is susceptible to contamination from multiple sources. If the device is not being worn 
correctly, or there is poor physical contact between the photosensor and the wearer’s tissue, 
ambient light will contaminate the PPG and in some cases saturate the sensor. Additionally, 
even if the interface between the photosensor and tissue is good, fluid flow in the tissue asso-
ciated with movement or pressure changes (i.e. not associated with the heart’s pumping of 
blood) will also change the observed PPG.

A number of studies have leveraged correlations between motion and PPG contaminants 
in an effort to mitigate artifact (Asada et al 2004, Gibbs et al 2005, Wood and Asada 2006). 
It is worth noting, however, that the nature of this motion and corresponding PPG artifact can 
vary greatly between clinical and ambulatory use cases. In the former, signal contaminants 
have traditionally been thought of as discrete artifact events, such as a single motion from 
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the wearer or removal of the sensor (Silva et al 2012, Karlen et al 2012b). However, during 
ambulation and exercise, signal contamination must be thought of as continuous and periodic, 
with significant spectral energy in the same frequencies as the physiological signals of interest 
(0.5 Hz < f < 3 Hz).

2.3. Signal quality estimation

Because the PPG is subject to contamination, a number of algorithms have been suggested 
to either detect reduction in signal quality or to reduce the presence of these contaminants 
(referred to as signal quality estimation and signal conditioning, respectively). This manu-
script focuses primarily on the problem of signal quality estimation. The majority of signal 
quality estimation algorithms rely on the quasi-periodic nature of the PPG signal to allow for 
segmentation of the time series into individual beats (Weng et al 2005, Farooq et al 2010, 
Karlen et al 2012a 2012b). Many of these algorithms use the derivative of the PPG (dPPG) 
for beat segmentation (Weng et al 2005, Farooq et al 2010). Assuming that beats can be suc-
cessfully segmented, there have been a number of approaches to signal quality estimation that 
leverage the fact that beat morphology is fairly consistent over short periods (Weng et al 2005, 
Sukor et al 2011, Karlen et al 2012b). Recognizing that there are multiple different signal con-
taminants, and that different predictors may be specific to as few as one of these contaminants, 
there has been a valuable effort to fuse multiple signal quality predictors in to a single quality 
metric (Clifford et al 2012, Li and Clifford 2012).

One limitation of the above-mentioned signal quality estimation approaches for the pur-
poses of consumer HR monitoring is that they typically utilize either clinical data from one or 
more publicly available databases or data collected in short segments from stationary users. 
In some cases, researchers developed devices that could be used during ambulatory behavior 
(Asada et al 2003, Karlen et al 2013), but did not stress-test signal quality estimation algo-
rithms by providing them with a wide variety of artifact types. The nature of signal contami-
nation in all of these datasets was discrete and aperiodic in nature, a condition that may be 
met in clinical settings, but does not represent the types of contamination observed during 
ambulatory use.

3. Methods

We employed a supervised learning approach to training of our algorithm, thus it was neces-
sary to collect optical HR data and manually label these data for time periods where quality 
was good/poor. Manual quality ratings (MQRs) were then used as ground-truth labels for 
subsequent ML methods. Additionally, accelerometry data and chest-strap HR were collected 
for comparative analyses.

3.1. Data collection

Data were gathered from 11 subjects (3 female) with no known history of cardiovascular ill-
ness. The recordings obtained were as follows: (1) two channels of reflective PPG recorded 
from the lateral surface of the left wrist using custom hardware, (2) 3-axis accelerometry 
(ADXL 327EB, Analog Devices Inc., Norwood, MA) recorded from the same location, and 
(3) inter-beat intervals and HR from a chest-strap HR monitor (HRM3, Garmin Ltd, Olathe, 
KS). PPG and accelerometer data were sampled at 1000 Hz (NI-9206, National Instruments 
Corp., Austin, TX). All behavioral cueing and data collection were performed using custom 
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C# and MATLAB software (MathWorks Inc., Natick, MA). Chest-strap data from a single 
subject were corrupted, resulting in the exclusion of that subject from the HR application por-
tion of the analyses below.

3.2. Experimental protocol

While data were being recorded, subjects performed three behavioral tasks: standing, walk-
ing in place, and jogging in place. Subjects were informed of the current behavioral task on a 
computer monitor placed in front of and approximately 50 cm away. Transitions in behavior 
were cued with an audible tone. The recording session began with 30 s of standing still. Then 
subjects performed three blocks of the three behaviors, randomized within-block. Each behav-
ior lasted for 80 s, resulting in a total session time of 12.5 min.

3.3. Manual quality annotation

Data from each channel were divided into seven-second windows, randomized and presented 
to expert raters in conjunction with accelerometer data from the same time period. Raters were 
instructed to rate the signal quality on a scale from one to four, using the following guidelines: 
(4) excellent signal quality, all beats can be easily visually identified; (3) good signal quality, 
fewer than all but more than half of beats can be visually identified; (2) mediocre signal qual-
ity, fewer than half but more than one beat can be visually identified; (1) poor signal quality, 
one or fewer beats can be visually identified. Accelerometer measurements were included 
in the rating process to lessen the likelihood that manual raters mistook periodic artifact for 
pulse. Figure 1 gives examples of data windows corresponding to the four manual quality rat-
ings (MQR). Data were manually rated by three experts, two of whom only rated every other 
window, resulting in a total of two ratings for each window. Final MQR was taken as the mean 

Figure 1. Examples of the four classes of manually-rated signal quality. Note the pulse 
waveform is entirely preserved when MQR = 4 and is preserved to lessening degrees as 
signal quality decreases.
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the two ratings for each window, resulting in seven possible quality ratings for each window 
(1, 1.5, 2, 2.5, 3, 3.5, or 4).

The goal of our feature extraction and supervised machine learning will be to predict these 
quality labels on new data windows.

3.4. Algorithm description

We sought to design an algorithm that could perform robustly in the presence of the large 
motion artifact present in PPG when subjects were performing the behavioral tasks listed 
above. To perform well in these varied use conditions, the algorithm utilizes a hybrid approach 
to signal quality estimation, incorporating information from a variety of independent predic-
tors, all used as features in a supervised learning approach to deriving an SQI. The features 
are organized in to three subsets: direct signal statistics, beat template match statistics, and 
sample-to-sample transition statistics, each of which is discussed separately below. Figure 2 
outlines the algorithm architecture.

Raw PPG signals were band-passed with a zero-phase digital filter (4th order Butterworth, 
=f 0.5 Hz,LP  =f 50 HzHP ).

Both filtered PPG signals and accelerometer signals were divided into seven-second win-
dows, with no overlap. Subsequent signal quality estimation was performed and evaluated on 
these windows.

For each seven-second window of 3-axis accelerometer data, an average accelerometer 
power was calculated by removing the offset from each channel, full-wave rectifying all sam-
ples, and taking the average across all samples and the three channels. This value was then 
log-transformed to be quasi-normally distributed and to allow for use of standard statistical 
methods. From this point forward, the value resulting from these operations is referred to as 
log accelerometer power.

Figure 2. Overview of system architecture. After pre-processing, a number of signal 
statistics or features are derived from each data window of PPG. The majority of these 
features are used directly by the final regression model, with the exception of the 
sample-to-sample transition statistics, which first become consolidated in to a single 
feature using a support-vector regression model.
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The following sections provide detailed feature extraction methods for the three feature 
subsets: direct signal statistics, beat template match statistics, and sample-to-sample transi-
tion statistics.

3.4.1. Direct signal statistics. We extracted three types of direct statistics from each 7 s win-
dow: kurtosis, autocorrelation peak strength, and spectral power.

Kurtosis of pulsatile signals has been used previously as a predictor of signal quality of the 
ECG waveform (Li et al 2008), leveraging the tendency of uncorrelated (i.e. noisy) data to 
be Gaussian distributed. For each seven second window of PPG data =    …x x x x( [ , , ] )M1 2 , we 
calculated the estimate of kurtosis ̂K( ) of that window as follows:

 
⎡
⎣⎢

⎤
⎦⎥̂

̂ ̂∑ μ
σ

= −

=

k
M

1 x

i

M
i

1

4

(1)

Where M is the number of samples in the data window and ̂μ  and ̂σ  represent the sample mean 
and sample standard deviation respectively. Finally, kurtosis values for each window were 
then log-transformed to de-emphasize the impact of outliers in our linear models.

Clean PPG signals are quasi-periodic and thus strongly self-correlated at lags related to their 
periodicity. Correspondingly, the second signal statistic we derived from each window was a 
feature from the autocorrelation function, which can be calculated with the following equation:

 ∑= −
*R m( ) x xxx

n
n n m (2)

This result can be simplified to not include the complex conjugate as x is real-valued, and 
subsequently normalized such that =R (0) 1.xx  Auto-correlations were calculated at lags from 
0 to 3000 samples (0 to 3 s). We then smoothed the resultant autocorrelation function with a 
rectangular filter that was 50 samples (0.05 s) wide. From the smoothed autocorrelation func-
tion, we then calculated peak-to-trough distances for all peaks not located at a lag of zero. In 
cases where peaks had troughs on either side, trough height was calculated as the average of 
the two troughs. The largest of these peak-to-trough distances was reserved as a feature that 
will subsequently be referred to as autocorrelation peak strength.

Especially in the case of electromagnetic (EM) interference, spectral characteristics of the 
PPG signal are correlated with signal quality. Thus the third set of features we extracted was 
the spectral power at a number of frequencies (1, 3, 5, 7, 9, 13, 17, 21, 25, and 29 Hz). These 
were estimated using Welch’s method of spectral density estimation with a window width of 
1024 samples (1.024 s) with overlap of 512 samples (0.512 s).

3.4.2. Beat template-match statistics. Individual beats are highly stereotyped in the PPG 
signal. Morphological characteristics of the heartbeat waveform can be learned and poten-
tially used to differentiate high-quality PPG signal from periodic artifact (e.g. artifact asso-
ciated with repetitive movements like walking) by comparing a test signal to a dictionary of 
previously observed high-quality beats (Karlen et al 2012b). To perform this comparison it 
is first necessary to attempt to segment the continuous PPG waveform into individual beats. 
We achieved this using an adaptation of the method of repeated Gaussian filters proposed by 
Karlen et al (Karlen et al 2012b), wherein HR frequency and phase candidates for a given 
PPG window are evaluated by constructing windows of repeated Gaussian waveforms cor-
responding to each combination of phase and frequency and correlating those windows with 
a transformed version of the dPPG. The frequency/phase combination that produces the 
highest correlation with the dPPG is subsequently used for beat segmentation. The method 
employed in this manuscript is similar, with two differences. First, instead of using the 
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discrete cosine transform (DCT) for HR estimation, we extract potential HRs by finding 
peaks in the autocorrelation of the first derivative of the PPG waveform. This allows for 
finer resolution of HR than methods based on the FFT or DCT. Second, when selecting the 
estimated HR for a given window, any candidate HRs that are determined to be factors of 
other candidate HRs are penalized. This penalty lowers the overall selection score for these 
candidate heart rates by 50%.

During the process of beat segmentation, three signal quality features are extracted. First, 
the autocorrelation HR score is calculated as the maximum peak-to-nearest-trough difference 
in the autocorrelation function of the data window. Second, the Gaussian correlation score 
is the correlation coefficient of the repeated Gaussian filters with the dPPG. Lastly, the HR 
estimate score, which reflects the accuracy of the HR estimate, is calculated as the product 
of the autocorrelation HR score, the Gaussian correlation score, and the candidate heart rate 
penalty (if applicable).

During initial training of the beat template-match algorithm, a template dictionary was 
populated with 20 templates representing high-quality pulse waveforms that were randomly 
selected from training data such that all subjects in the training set contributed an equal num-
ber of templates to the dictionary. Only data windows taken when the subjects were standing 
and with MQR of 4 contributed seed templates to the template dictionary.

With the seed dictionary populated, quality features for all data windows were extracted 
by correlating each beat within a window to all 20 templates. To length-match test beats with 
templates from the dictionary, the two were aligned at peaks in their respective derivatives and 
the longer beat was truncated to be the length of the shorter. The final four quality features 
derived from this process were the mean beat correlation, median beat correlation, minimum 
beat correlation, and maximum beat correlation.

Pulse wave morphology can differ from subject to subject. To account for this possibility, 
and improve the predictive capability of the template matching model, we allowed the tem-
plate dictionary to converge to a user-specific pulse morphology in an unsupervised fashion. 
On a subject-by-subject basis, initial seed templates were incrementally replaced by subject 
specific templates that had sufficiently high correlation scores. The correlation requirement 
for beat replacement was increased from an initial threshold of 0.89 to a final threshold of 0.94 
in increments of 0.0025 with each subsequent dictionary replacement. Once all 20 templates 
had been replaced by user-specific templates, this updating process was halted.

3.4.3. Sample-to-sample transition statistics. A major susceptibility of the template match-
ing approach is that it relies on its ability to successfully segment the continuous PPG wave-
form in to individual beats. In an effort to allow for signal quality estimation in cases where 
beat segmentation was not reliable, we developed a novel, non-segmenting approach that uti-
lizes the quasi-periodic, highly stereotyped nature of the PPG waveform without the need for 
beat segmentation.

For each filtered PPG data window, we downsampled from 1000 to 15 Hz, normalized the 
window to be on the interval [0, 1], and quantized the signal to a bit depth of 4. This means that 
any given sample within the window could then take on 1 of 16 discrete values. Next, using all 
samples within the data window, we determined the transition matrix from sample n to sample 

+n 1 which was then normalized to become the probability distribution  | +p x x( ) .n n1  As can 
be seen in figure 3, an example transition matrix for high-quality signal is qualitatively quite 
different from the transition matrix for low-quality signal.

Because of the high dimensionality of this feature subset (256 features) relative to the other 
features extracted from each data window, we employed a late fusion approach and trained 
a linear support vector machine (SVM) for regression (SVR) on these transition-statistics 
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features using MQRs as labels. This SVM was implemented using the LIBLINEAR library 
(http://www.csie.ntu.edu.tw/~cjlin/liblinear/) and utilized L2-loss regularization. The predic-
tion output of the SVR was then fused with the remaining feature set for signal quality predic-
tion (section 3.5). In each fold, the SVR was trained on training data alone, but features were 
extracted for all training and test data to allow for training of the 2nd-stage ML algorithm.

3.5. Signal quality prediction

We trained a classification and regression tree (CART; (Breiman 1993)), using the fea-
tures derived above, to predict quality labels on the same four-point scale used for manual 
quality labeling.

Model training and testing were performed using leave-one-out cross validation. In each 
fold an entire subject’s data trace was withheld from the training set for use as test data. This 
resulted in 11 folds total. To encourage model sparseness and reduce the chance of over-
fitting, the minimum number of observations per tree leaf was set to 30. For error analyses, 
the test results from each fold were combined to allow for assessment of the algorithm’s per-
formance across all folds.

A quality prediction was generated for every seven-second window in the test recording 
for each fold.

3.6. Heart rate estimation

In the example application of our signal quality estimation framework, we estimate HR for 
individual data windows. This is done to allow for comparison of error in HR estimation as a 
function of SQI, to demonstrate the utility of such a measure.

There are myriad methods for heart rate estimation, and comparison of these methods is 
not the focus of this manuscript. Thus for the purposes of this comparison, we extract potential 
HRs using the method described above in section 3.4.2. The HR chosen for each window was 
the beat frequency with the highest overall HR estimate score.

3.7. Statistical comparisons

In section 4.2, on a subject-by-subject basis, log accelerometer power and MQR values were 
averaged across all observations for a given behavior to remove statistical bias due to multiple 
correlated observations. Significance of an overall interaction between behavioral state and 
log accelerometer power, as well as between behavioral state and MQR were evaluated with 

Figure 3. Example transition probability distribution functions for various MQRs. Warm colors 
represent higher probabilities. Color scaling stops at a maximum probability of p = 0.20 to enhance off-
diagonal components.

http://www.csie.ntu.edu.tw/~cjlin/liblinear/
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a one-way, repeated measures ANOVA. For these same two outcome measures, individual 
relationships between pairs of behavioral states were evaluated using two-sided paired-sample 
student’s t-tests.

Similarly, in section 4.4, statistical assessment of consistency of SQI prediction error across 
folds was performed using a one-way ANOVA.

In section 4.5, comparison of segmenting and non-segmenting approaches for low-MQR 
windows, as well as comparison of segmenting, non-segmenting and combined approaches 
for all windows was performed using two-sided paired-sample student’s t-tests.

Lastly, in section 4.6, statistical comparison of error in HR estimation as a function of 
HR stratum was performed on a pairwise basis (six possible pairs of strata) using two-
sided Wilcoxon rank-sum tests that were subsequently Bonferroni corrected for multiple 
comparisons.

4. Results

The results section is organized as follows:

	 •	 Sections 4.1 and 4.2 present a brief summary of the data collected as well as a confirma-
tion that subjects were performing the behavioral task as instructed. This serves to verify 
the impact of ambulation on MQR.

	 •	 Section 4.3 provides an assessment of the predictive capability of individual features 
with respect to MQR, demonstrating specifically that, for our ambulatory dataset, our 
non-segmenting approach correlates with MQR better than the other features that were 
evaluated.

	 •	 Sections 4.4 and 4.5 present an cross-validated assessment of our ML-based signal quality 
estimation framework, with a specific focus on SQI error as a function of both MQR and 
artifact periodicity. The latter comparison serves to demonstrate the relative contributions 
of the non-segmenting and segmenting approaches in the presence of periodic artifact.

	 •	 Lastly, section 4.6 provides an example application of the utility of our framework in the 
task of HR-estimation.

4.1. Data summary

After discarding data windows that bridged behavioral states, the mean (± standard devia-
tion) number of seven-second data windows among subjects was 112.7  ±   1.42. The mean 
number data windows for standing, walking in place, and jogging in place were 40.3  ±  0.65, 
36.4  ±  0.81 and 36.1  ±  0.83, respectively.

4.2. Confirmation of behavioral compliance

We determined that there was a significant effect of behavioral state on log accelerometer 
power (F (2, 20) = 392.34, p < 0.0001), indicating that the magnitude of mechanical forces 
acting on the body and sensor varied as a function of behavioral state. Similarly, there was a 
significant effect of behavioral state on MQR (F (2, 20) = 200, p < 0.0001). Individual t-tests 
between behavioral conditions determined that both log accelerometer power and MQR were 
significant between all condition pairs (N = 11, p < 0.0001 in all cases). Figure 4 shows these 
behavioral results. Though the first of these results seems quite obvious, it serves to con-
firm that subjects were, in fact, performing the task as instructed. The second demonstrates 
the strong interaction between behavior (standing, walking, and running) and the amount of 
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artifact present in the PPG signal. This serves as additional motivation of the importance of 
signal quality estimation during ambulatory activity.

4.3. Individual quality estimators

In mobile heart rate monitoring applications, computational power and energy use limita-
tions result in significant engineering constraints. Thus, heart rate monitoring device firmware 
will need to be as efficient as possible; performing on-device calculation of all of the signal 
quality features described above may not always be feasible. With that in mind, we sought to 

Figure 4. Confirmation of behavioral compliance. Subplot (a) shows the relationship 
between log accelerometer power and behavior, with the three behavioral states shown 
in different colors. Subplot (b) shows the relationship between MQR and behavior, 
utilizing the same color scheme. Three stars (‘***’) above significance bars represent p 
values of less than 0.0001.
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understand the relationship between individual quality features and MQR, specifically seek-
ing out features that were most strongly correlated with signal quality.

We performed regression analyses on a feature-by-feature basis as well as on the feature 
subsets described above, which are reported in table 1. It is important to note that these anal-
yses were not performed using a complete cross-validation approach, only cross-validated 
training for the sample-to-sample transition SVR. Furthermore, initial beat templates were 
contributed to the template-match feature algorithm by all subjects and the sample-to-sample 
transition SVR was trained using training data from all subjects (Pearson’s r and MSE  val-
ues reported only on test data). This analysis was conducted with the goal of understanding 
how well different features and feature sets individually correlated with MQR. Though all 
features were significantly correlated with MQR, regression using the sample-to-sample tran-
sition features and log accelerometer power resulted in the highest correlations and lowest 
residual error (calculated as the square root of mean squared error MSE[ ] between MQR 
and SQI; Pearson’s r of 0.8980 and −0.8211, and MSE  of 0.5337 and 0.6924, respectively), 
meaning that these features would likely be the most robust predictors of MQR. See table 1 
for complete results.

4.4. Estimation of signal quality

We then trained a CART using all features and employing the leave-one-out validation 
approach described above. During testing of all folds we achieved a mean correlation of 
0.9263 and an MSE  of 0.4627. Additionally, we trained individual CART models for each 
feature group to directly compare predictive performance of each feature group. Results are 
summarized in table 2. Observing that in some cases the CART was capable of estimating 

Table 1. Results of linear regression between individual features/feature groups 
and MQR. Pearson’s r values not shown for multiple regressions. Regression 
using the sample-to-sample transition features and log accelerometer power 
(both non-segmenting approaches) resulted in the highest correlations and 
lowest residual error. Feature subgroups and their corresponding Pearson’s r 
values and MSE values are shown in bold type. Higher Pearson’s r or lower 

MSE signify that a given feature is a better predictor of MQR.

Feature (feature type) Pearson’s r MSE

Log accelerometer power (non-segmenting) −0.8211 0.6924
Sample-to-sample transition statistics (non-segmenting) 0.898 0.5337
Direct signal statistics (non-segmenting) 0.7528
 Log kurtosis −0.4674 1.0724
 Autocorrelation peak strength 0.5707 0.9961
 Spectral power 0.9238
Beat template match statistics (segmenting) 0.6979
 Autocorrelation HR score 0.5809 0.9874
 Gaussian corr. Score 0.5904 0.9790
 HR est. score 0.6498 0.9221
 Mean template correlation 0.7595 0.7890
 Med. template correlation 0.6813 0.888
 Max. template correlation 0.4442 1.0868
 Min. template correlation 0.7395 0.8166
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MQR in cross-validation analyses better than our correlation analyses above suggests that 
non-linear models may better capture the relationships between those feature sets and MQR.

It is interesting and important to note that the greatest errors in SQI (calculated as the mag-
nitude of the difference between SQI and MQR for a given window) occurred for windows 
where MQR was intermediate (i.e. not 1 or 4). This can be seen in figure 5. Mean magnitude of 
prediction error was consistent across all folds, with no significant effect of fold on SQI error 
(F (10, 66) = 0.94, p = 0.5074) suggesting that the results were consistent across all subjects.

4.5. Signal quality estimation in the presence of periodic artifact

We performed additional analyses using the two CART models trained using segmenting (beat 
template match) features and our non-segmenting (sample-to-sample transition) features.  
In order to test our hypothesis that non-segmenting signal quality algorithms are advanta-
geous to their segmenting counterparts specifically when applied to PPG signal that has been 
contaminated by periodic artifact, we first looked only at data windows where MQR was low 
(less than or equal to 1.5, implying at least one rater scored the window as a 1), comparing the 

Table 2. Results of leave-one-out CART-based regression analyses using all 
features and feature subsets.

Feature group Pearson’s r MSE

All Features 0.9263 0.4627
Log accelerometer power (non-segmenting) 0.8283 0.713
Sample-to-sample transition statistics (non-segmenting) 0.9134 0.4932
Direct signal statistics (non-segmenting) 0.7373 0.8355
Beat template match statistics (segmenting) 0.8343 0.6692

Figure 5. Signal quality estimate error magnitude as a function of MQR. Error 
magnitude was calculated as the absolute value of the difference between MQR and SQI 
for each window. Note decreased error rates at the extrema of manual quality ratings.
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performance of these two regression models in the case where the signal was highly autocorre-
lated (autocorrelation peak strength was greater than or equal to 0.5) to the case where it was 
not (autocorrelation peak strength was less than 0.5). Low-quality regions that are highly peri-
odic are very likely contaminated with periodic motion artifact. As would be expected from 
their relative regression strengths outlined in table 1, the model trained on sample-to-sample 
transition (non-segmenting) features out-performed the model trained on beat template match 
(segmenting) features (N = 11, p = 0.0341). Breaking this down by window type, we see that 
non-segmenting and segmenting approaches demonstrated equivalent performance on non-
autocorrelated windows (N = 11, p = 0.9765), but the segmenting approach significantly out-
performed the non-segmenting approach on the autocorrelated windows (N = 11, p = 0.0037). 
This result demonstrates that the non-segmenting approach shows improved performance 
relative to the segmenting approach specifically during periods where the PPG signal was 
contaminated with strongly periodic artifact, such as during walking or running.

In order to address our second hypothesis that a combined approach would outperform 
either of these individual approaches we then considered all data windows for each subject, 
comparing the performance of these two individual CART models to the performance of the 
model trained on all features. The combined model outperformed both the model trained 
only on segmenting features (N = 11, p = 0.0034) and the model trained on non-segmenting 
 features (N = 11, p = 0.0116).

Both of these results are summarized in figure 6.

4.6. Signal quality prediction applied to HR estimation

The notion of signal quality is, in reality, application-dependent. Features relevant to suc-
cessful estimation of signal quality may change depending on what physiological parameters 
are going to be extracted from the signal downstream in the processing pipeline. In the same 

Figure 6. Subplot (a) depicts the differences in performance (as measured by MSE) of 
segmenting and non-segmenting algorithms in cases where signal quality is low and the 
signal is either very autocorrelated or not well autocorrelated. Note that the segmenting 
algorithm performed worse than the non-segmenting algorithm in cases where the 
signal was highly autocorrelated. Subplot (b) considers all windows, and demonstrates 
that a combined approach that utilizes both segmenting and non-segmenting methods 
out performs either approach alone. One star (‘*’) above significance bars represents a 
p value of less than 0.05, but greater than 0.01. Two stars (‘**’) above significance bars 
represent a p value of less than 0.01.
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way, thresholds for minimum allowable signal quality may also change. With this in mind, we 
sought to evaluate our signal quality estimation algorithm in the context of HR monitoring, 
a common application of the PPG signal. Using all signal quality features, and comparing 
HR estimated using the same algorithm that was used to estimate HR during beat segmen-
tation to ground truth HR obtained from an ECG chest strap, we found that HR estimation 

Figure 7. Results from HR analysis. Subplot (a) shows absolute error in HR estimate 
as a function of automatically determined signal quality for data windows from the 
10 subjects included in the HR analysis. Regressing absolute HR error against signal 
quality resulted in a Pearson’s r-value of −0.501. Regression fit is shown as a dashed 
black line. Subplot (b) presents the same data, where signal quality has been stratified 
in to integer values from one to four. With reference to each box plot the horizontal 
red line depicts the median, the extents of the notch surrounding the median are the 
95% confidence intervals of this estimate, the extents of the box are the upper and 
lower quartiles, the whiskers extend to the greatest values not considered outliers, and 
outliers, which are considered as any values more than 1.5 times the inter quartile range 
above or below their respective quartlies, are shown as circles. The inset plot shows the 
distributions of the three largest strata in more detail.
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error magnitude was significantly anti-correlated with SQI (Pearson’s r = −0.501, p < 0.0001). 
Stratifying quality values as SQI1 < 1.5, 1.5 <= SQI2 < 2.5, 2.5 <= SQI3 < 3.5, and SQI4 <= 
3.5, we found significant pair-wise relationships between all strata (p < 0.01 for SQI3-SQI4 
and p < 0.0001 for all other pairs, Wilcoxon rank-sum test). In other words, our signal qual-
ity prediction approach is generally able to predict scenarios where a real application—HR 
estimation—would likely be unreliable.

Both the linear trend and HR estimation error magnitude as a function of stratified SQI can 
be seen in figure 7. Note that these analyses were only performed on data from 10 of the 11 
subjects, as the HR chest strap data were corrupt for the 11th subject.

5. Discussion

In this study we have expanded the paradigm of signal quality estimation beyond the clini-
cal environment to a model that could be applied to continuous data collection using a non-
invasive, wearable biosensor. We have developed and validated a signal quality estimation 
system that can estimate graded signal quality and demonstrated the utility of signal quality 
estimation in an example cardiac output metric. Specifically, we have proposed a novel sig-
nal quality feature set that does not rely on successful segmentation of PPG waveforms in to 
individual beats, and demonstrated the circumstances under which this feature set is superior 
to alternatives that do rely on beat segmentation. These findings equip us with an important 
tool as we move toward the eventual goal full-time monitoring of cardiac health outside of the 
clinical environment.

The majority of segmenting approaches to signal quality estimation leverage the fact that 
beat morphology is fairly similar from beat to beat, and beats that deviate greatly from the 
current model of beat morphology are likely artifactual. However, it is difficult for segmenting 
approaches to differentiate periodicity in the PPG due to beating of the heart from periodicity 
due to ambulatory movement. Therefore, these methods are susceptible to falsely developing 
a self-reinforcing model of pulse morphology that is based solely on motion-induced PPG 
changes, which could lead to performance differences as were demonstrated in figure 6. The 
sample-to-sample transition statistics that we proposed in this manuscript leverage the differ-
ences between pulse wave morphology of uncontaminated PPG and PPG corrupted by quasi-
periodic motion; specifically, the asymmetry intrinsic to clean PPG. When fused with features 
that are sensitive to discrete motion events (e.g. autocorrelation metrics), we demonstrated 
that both periodic and aperiodic signal contaminants can be robustly identified.

There are two primary strategies that are applied to the problem of contaminated PPG 
signal. The first, which was the focus of this manuscript, is the estimation of an SQI that 
can be utilized in downstream processes to choose to include or exclude data segments from 
subsequent analyses. The second, which is in some ways a more difficult problem, is the 
estimation and subsequent removal of components of the PPG signal that are attributable to 
motion of the limb or digit where the device is being worn. Though these two techniques are 
by no means mutually exclusive, the majority of investigations focus on one or the other (see 
(Krishnan et al 2010) for an exception). That being said, we see a tremendous opportunity 
in the coupling of signal conditioning with signal quality estimation, specifically the use of 
an SQI to provide information about the success of an applied signal conditioning approach 
and to determine whether the procedure resulted in a reliable signal. As we observed in this 
manuscript, PPG signal can be contaminated by a variety of different sources, and different 
signal conditioning approaches may be more or less successful depending on the source 
contaminant.
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In addition to software-based approaches for improving PPG signal quality, many groups 
are exploring hardware and interface-based changes to PPG acquisition systems that can make 
them more robust to motion artifact. Approaches involving multiple wavelengths of transmit-
ted light (Patterson and Yang 2011, Yousefi et al 2014), modulated LED brightness (Patterson 
and Yang 2011), and deliberate control of sensor-to-skin interface pressure (Asada et al 2003) 
are all being considered. Robust SQI frameworks provide an objective mechanism by which 
to compare PPG signals recorded using these different systems.

An optical pulse monitor that is intended to be worn all day by an individual who is going 
about their normal routine will, by the very nature of its use, be subjected to a variety of dif-
ferent signal contaminants. An important follow-up study to the work presented here will be 
to evaluate contaminant nature and corresponding signal quality estimation of optical signals 
during more natural use cases. Our experimental conditions reflected only a subset of behav-
iors that, though they did effectively reflect changes in signal quality due to exercise condi-
tions, certainly did not span the breadth of activities that a wearer would undergo throughout 
the course of a day. As such, we expect that ideal signal quality assessment systems will 
employ a variety of strategies for quality estimation, possibly even modifying their strategy 
dynamically based on estimation of the user’s state (e.g. sedentary, exercising, etc.) and envi-
ronmental conditions. It is important to note that, even in our specific set of experimental con-
ditions, algorithm performance was maximal when features derived using both segmenting 
and non-segmenting methods used together.

An additional valuable point of discussion concerns how we define high and low signal 
quality. As has been mentioned previously, systems that are trained to identify signal quality, 
necessary quality acceptance thresholds, and remediation strategies in the case of low signal 
quality are all highly application-dependent. In this study, in an effort to achieve consistency, 
raters were trained to rate signal quality using a specific rubric. However, this rubric was not 
designed with a specific application in mind. Though we presented the use of signal quality 
estimation in a HR application, our raters evaluated PPG signal quality based on their ability 
to visually identify individual beats, which is a metric that may be most suitable for applica-
tions that require resolving individual beats in the PPG signal such as HRV or pulse transit 
time (Smith et al 1999). Furthermore, though raters were instructed to use a specific rubric 
when assessing the quality of PPG data, we observed substantial variability between raters, 
especially at intermediate values of MQR. This may partially explain why signal quality esti-
mation errors were highest for intermediate MQR values (see figure 5); however, it also speaks 
to the robustness of our algorithm to noise in the ground-truth labels. In the absence of a 
large number of ratings from multiple raters, such variability is effectively additive noise that 
weakens the effectiveness of training for a supervised ML algorithm. We find it promising that 
automated signal quality detection is robust even in the presence of noise in the data labels, 
resulting in excellent predictive capability.

Taken together, these points punctuate the notion that signal quality in general, and specifi-
cally systems that are trained to programmatically estimate signal quality, must be considered 
in the context of the application for which they are intended. As an example, in the develop-
ment of a PPG-based HR monitor, instead of labeling data windows with manual quality rat-
ings, it may make more sense to train signal quality estimators on errors in HR estimation as 
compared to ground truth HR derived from an electrocardiogram (ECG), or alternatively to set 
an error threshold and train a quality estimator to predict whether signal quality is sufficient 
to estimate HR with sufficient accuracy to be within that threshold. Fortunately, modern ML 
methods such as those used in this study will function equally well in this application-specific 
case, and may even identify meaningful features that are specifically related to the ability of 
a HR estimation algorithm to correctly extract HR. We recognize that the HR application we 
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demonstrated could be expanded significantly by employing more sophisticated approaches to 
HR estimation, such a Kalman filter that takes in to account previous heart rate estimates and 
prior knowledge about the rate at which HR can change (Li et al 2008), however, such work is 
beyond the scope of this manuscript. Our example served to illustrate the utility of PPG signal 
quality estimation in a model example.

Though we applied our algorithm exclusively to PPG signals, we expect that they may 
be equally applicable to signal quality detection during direct measurement of the pulsatile 
pressure wave. Pressure wave signals are morphologically quite similar to the PPG waveform. 
Applanation tonometry (AT) of the radial artery has been proposed for estimation of aortic 
pressure waveform, brachial blood pressure, and response to hypertensive treatment (Nelson 
et al 2010). Derivation of these metrics, however, requires observation of the accurate pulse 
pressure wave form, and correspondingly high signal quality. The AT signal is equally, if 
not more so, susceptible to motion artifact, punctuating the need for robust signal quality 
estimation.

The work discussed in this manuscript represents a significant step forward toward ubiqui-
tous, non-invasive heart health sensing. With the continued development of wearable biosen-
sors come many opportunities for reduction in morbidity of major cardiac diseases. As the 
quantity of data collected from these sensors continues to increase, the importance of effective 
automated signal quality estimation will increase correspondingly.
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