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ABSTRACT 
Many simulation environments – particularly those intended for 
medical simulation – require solid objects to deform at interactive 
rates, with deformation properties that correspond to real 
materials.  Furthermore, new objects may be created frequently 
(for example, each time a new patient’s data is processed), 
prohibiting manual intervention in the model preparation process.  
This paper provides a pipeline for rapid preparation of deformable 
objects with no manual intervention, specifically focusing on 
mesh generation (preparing solid meshes from surface models), 
automated calibration of models to finite element reference 
analyses (including a novel approach to reducing the complexity 
of calibrating nonhomogeneous objects), and automated skinning 
of meshes for interactive simulation. 

Categories and Subject Descriptors 
I.6.0 [Simulation and Modeling]: General; I.6.1 [Simulation and 
Modeling]: Model Validation and Analysis 

General Terms 
Algorithms 

Keywords 
Interactive simulation, real-time deformation, deformable models, 
finite element modeling, mesh skinning, model calibration, 
simulated annealing, mesh generation, medical simulation, soft 
tissue simulation 

1. INTRODUCTION AND RELATED WORK 
1.1 Background 
Interactive physical simulation has become a critical aspect of 
many virtual environments.  Many medical simulation 
environments – both commercial ([48],[14],[25],[49],[51],[59]) 
and academic [35],[13],[58],[57],[42]) – already depend on 
modeling deformable solids.  The vast majority of tasks 
performed during surgery involve interaction with deformable 
bodies, so a medical simulator is expected to not only represent 
deformation, but to model it with sufficient accuracy for effective 
training.  Force/deformation curves of virtual organs should 
correspond to their real counterparts, and deformation should vary 
realistically among patients, among tissue types, and even within 
a tissue type. 

Currently many of these simulators focus on canonical cases, 
whose creation requires significant manual intervention by 
developers, technicians, or manufacturers.  As surgical simulation 
enters mainstream medical practice, the use of patient-specific 
data in place of canonical cases is likely to become common, 
allowing a much broader range of applications and training cases.  
This scenario prohibits the use of tedious manual procedures for 
data preprocessing. 

This paper addresses this need: automatic preparation of realistic 
deformable models for medical simulation.  We restrict our 
discussion to a particular simulation method in the interest of 
focusing on automation of model preparation (rather than 
simulation), but the techniques presented here can be generalized 
to other models. 

We assume that the user provides a surface model of the desired 
structure; this is a reasonable assumption, as surface models are 
easily derived from automatically-segmented medical images.  
We further assume that the user provides constitutive properties 
describing the material they are attempting to represent; this is 
also a reasonable assumption, as constitutive properties for a wide 
variety of materials are available in engineering handbooks.  
Constitutive properties for biological tissues can be measured 
experimentally ([12],[45],[52]). 

Section 2 discusses the generation of volumetric (tetrahedral) 
meshes from surface meshes.  Section 3 discusses the use of a 
finite element reference model to calibrate an interactive 
simulation.  Section 4 discusses simulation and rendering, 
focusing on a geometric interpretation of the simulation technique 
presented in [54] and a mesh skinning technique that is suitable 
for our deformation model.  The remainder of Section 1 discusses 
work related to each of these three topics. 

1.2 Related Work: Mesh generation 
“Mesh generation” generally refers to the process of discretizing a 
space into volumetric elements.  The space is frequently defined 
by either an implicit or explicit surface boundary, and the 
elements are generally explicit solid units, commonly tetrahedra 
or hexahedra when the space is three-dimensional. 

Ho-Le [24] provides a summary of core methods in mesh 
generation for finite element analysis, and Zhang [60] provides a 
summary of more recent work in this area. Si [47] describes a 
common, public-domain package for mesh generation, 
specifically targeted toward finite element analysis applications.  
Recent work on mesh generation employs physical simulation in 
the meshing process (e.g. [11]). 
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The work most closely related to the approach presented in 
Section 3 of this paper is that of Mueller [41], which also focuses 
on generating approximate, non-conformal meshes for interactive 
simulation. 

1.3 Related Work: Deformation Calibration 
Early work exploring the relationship between non-constitutive 
simulations (generally mass-spring systems) and finite element 
analyses began with Deussen et al [18], who optimize a 2D mass-
spring system to behave like an analytically-deformed single 2D 
constitutive element.  Similarly, van Gelder [56] analytically 
derives spring constants from constitutive properties for a 2D 
mass-spring system.  This work also includes a theoretical proof 
that a mass-spring system cannot exactly represent the 
deformation properties of a constitutive finite element model.   

While most work in this area has been oriented toward volumetric 
solid deformation using simulation results as a ground truth, Bhat 
et al [7] use video of moving cloth to calibrate simulation 
parameters for a cloth simulation.  Similarly, Etzmuss et al [19] 
extend the theoretical approach of van Gelder [56] to derive a 
mass-spring system from a constitutive model of cloth. 

Bianchi et al [8] demonstrate that a calibration procedure can 
enable a 2D mass-spring system to recover the connectivity of 
another 2D mass-spring system; deformation constants are held 
constant.  Bianchi et al [9] later demonstrate the recovery of 
spring constants, and the 2D calibration of a mass-spring system 
to a finite element reference model.  They do not extend their 
calibration to 3D, and do not provide a mechanism for handling 
the exponential growth in optimization complexity associated 
with 3D objects and complex topologies.  Choi et al [15] use a 
similar approach to calibrate a homogeneous mass-spring system, 
and Mosegaard [39] uses a similar optimization for simple models 
but takes dynamic behavior into account during optimization. 

1.4 Related Work: Mesh Skinning 
Mesh skinning describes the process of animating the vertices of a 
rendered mesh to correspond to the behavior of an underlying 
skeleton.  This has become a very common technique for 
rendering characters in games and video animation; the skeleton 
often literally represents a character’s skeleton and the rendered 
mesh generally represents the character’s skin.  Skinning is easily 
implemented in graphics hardware [43], making it suitable for a 
variety of simulation environments. 

Recent work on mesh skinning has focused on correcting the 
inaccuracies that result from naïve blending, as per [31], and on 
automatically associating vertex movements with an implicit 
underlying skeleton [29] as a form of animation compression.  
However, bones are generally defined and associated with 
vertices manually by content developers, as part of the 
modeling/animation process. 

2. MESH GENERATION 
This section discusses our approach to generating tetrahedral 
meshes from surface meshes for interactive deformation. 

2.1 Background 
Previous approaches to generating tetrahedral meshes (e.g. 
[41],[47],[11], [2],[21],[22]) from surface meshes have generally 
focused on generating conformal meshes (meshes whose 

bounding surface matches the target surface precisely) for high-
precision finite element simulation.  Consequently, the resulting 
meshes are generally highly complex, particularly near complex 
surface regions. 

Interactive simulation presents a different set of requirements and 
priorities for mesh generation.  Since the use of interactive 
simulation techniques comes with an intrinsic loss in precision, 
some discrepancy between the target surface mesh and the 
resulting volumetric mesh is generally acceptable.  In particular, 
the computational expense of increased tetrahedron count does 
not justify the benefits of a conformal mesh.  For most 
applications, the surface used for interactive rendering is 
decoupled from the simulation mesh, so the nonconformality of 
the mesh will not affect the rendered results (see Section 4).  We 
highlight that the relaxation of conformality requirements 
represents an intrinsic tradeoff between simulation accuracy and 
simulation interactivity, a necessary tradeoff for any interactive 
environment.  Ultimately, any application using the techniques 
presented here will control this tradeoff with an appropriate 
choice of mesh resolution. 

Like finite element simulation, most interactive simulation 
techniques have difficulties when tetrahedral aspect ratios 
approach zero.  In other words, “sliver” tets are generally 
undesirable, since they are easily inverted and do not have well-
defined axes for volume restoration forces. 

The behavior of interactive simulation techniques is often visibly 
affected by topology, so a homogeneous material is generally 
most effectively simulated by a mesh with homogeneous 
topological properties.  Thus there is an intrinsic advantage to 
regularity in deformable meshes. 

Thus the goal of the technique presented here is to automatically 
generate nonconformal, regular meshes with large tetrahedral 
aspect ratios. 

It is also desirable for the process to proceed at nearly interactive 
rates for meshes of typical complexity, so the process can easily 
be repeated following topology changes or plastic deformation 
during interactive simulation. 

2.2 Mesh Generation 
Our mesh generation procedure begins with a surface mesh 
(Figure 1a), for which we build an axis-aligned bounding box 
(AABB) hierarchy (Figure 1b). 

The AABB tree is used to rapidly floodfill (voxelize) the surface 
(Figure 1c).  The floodfilling begins with a seed voxel, identified 
by stepping a short distance along the inward-pointing surface 
normal of a mesh triangle.  This voxel is considered to be an 
internal voxel.  Floodfilling sequentially pulls internal voxels 
from a queue.  A ray is cast from each known internal voxel to 
each of its neighbors; the AABB hierarchy is used to determine 
whether this ray crosses the object boundary, with spatial 
coherence exploited as per [36].  If the ray does not cross the 
surface, the neighbor is marked as an internal voxel and is placed 
on the queue.  If the ray does cross the surface, the neighbor is 
marked as a border voxel and is not considered for further 
processing.  Floodfilling proceeds until the queue is empty. 

The resolution of voxelization – which determines the resolution 
of the output tet mesh – is user-specified.  Since voxels are 
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isotropic, the user need only specify the voxel resolution of the 
mesh’s longest axis, a simple precision metric that a user can 
intuitively relate to the target application.  Voxelization is allowed 
to proceed one voxel outside the surface; for interactive 
simulation techniques that include collision-detection and 
penalty-based collision response, it is generally desirable to 
slightly overestimate object volume at this stage. 

Each resulting voxel (defined by its center point) is then used to 
create a cube of eight vertices.  Vertices are stored by position in 
a hash table; existing vertices can thus be recalled (rather than re-
created) when creating a voxel cube, allowing shared vertices in 
the output mesh.  Each resulting cube is then divided into five 
tetrahedra (Figure 2), yielding the final tetrahedral mesh (Figure 
1d). 

2.3 Implementation and Results 
The mesh generation approach presented here was incorporated 
into the voxelizer package, available online and discussed in more 
detail in [36].  The package is written in C++ and uses CHAI [16] 
for visualization and collision detection (AABB tree 
construction).  Files are output in a format compatible with 

TetGen [47]. 

To evaluate the computational cost of our approach, and thus its 
suitability for real-time re-meshing, we generated tetrahedral 
meshes for a variety of meshes (Figure 3) at a variety of 
resolutions on a 1.5GHz Pentium 4.  Resolutions were specified 
as “long axis resolution”, i.e. the number of tetrahedra along the 
output mesh’s longest axis (Section 2.2). 

Table 1 summarizes these results.  Mesh generation time is almost 
precisely linear in output tet count (Figure 5), and mesh 
generation time is below one second for meshes up to 
approximately 250,000 tets.  Mesh generation proceeds at 
graphically interactive rates (>10Hz) for meshes up to 
approximately 20,000 tets.  Current parallel simulation techniques 
([23],[53]) allow simulation of over 100,000 tets interactively; 
mesh generation for meshes at this scale is not real-time (about 
500ms), but would be sufficiently fast – even at these extremely 
high resolutions – to allow nearly-interactive background 
remeshing in cases of topology changes and large deformations. 

Figure 4 shows mesh generation times as a function of the user-
specified precision variable: long axis mesh resolution. 

A binary version of our mesh generation approach is publicly 
available at: 

http://cs.stanford.edu/~dmorris/voxelizer 

3. CALIBRATION TO GROUND TRUTH 
DEFORMATION 
This section discusses the automated calibration of non-
constitutive deformation properties using known constitutive 
properties and a finite-element-based reference deformation. 

3.1 Background 
Techniques for simulating deformable materials can be classified 
coarsely into two categories: constitutive and non-constitutive 
models. 

(a) (b)

(c) (d)

(a) (b)

(c) (d)

Figure 1. Stages of the mesh generation process: (a) initial
surface mesh, (b) axis-aligned bounding box hierarchy for
rapid voxelization (c, with voxel centers in green), and (d)
splitting of voxels into tetrahedra. 

(a) (b)

(c) (d)

(a) (b)

(c) (d)

Figure 3. Meshes used for evaluating mesh generation.  (a) 
Gear: 1000 triangles. (b) Happy: 16000 triangles. (c) Dragon: 
203,000 triangles (d) Bunny: 70,000 triangles. 
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Approaches based on constitutive models (e.g. 
[42],[32],[6],[34],[28],[3],[4]) generally use equations from 
physics to describe how a material will behave in terms of 
physical constants that describe real materials – e.g. Poisson’s 
coefficient, Young’s modulus, etc.  These constants can generally 
be looked up in an engineering handbook or determined 
experimentally for a particular material.  Many methods in this 
category are variants on finite element analysis (e.g. 
[42],[32],[6]), which uses known constitutive relationships 
between force and deformation to predict how a material will 
deform.  These methods are traditionally accurate relative to non-
constitutive methods, and are used for computing stresses and 
strains for critical applications in structural mechanics, civil 
engineering, automotive engineering, etc.  However, these 
methods are generally associated with significant computational 

overhead, often requiring solutions to large linear systems, and 
thus cannot generally be run at interactive rates.  When these 
approaches are adapted to run at interactive rates, generally 
through an assumption of linear elasticity (e.g. [17]), they are 
generally limited in the mesh resolutions they can process in real-
time. 

In contrast, many approaches to material deformation are non-
constitutive, e.g. [54],[37],[38],[23],[53].  Rather than using 
physical constants (e.g. elastic moduli) to describe a material, 
such approaches describe objects in terms of constants that are 
particular to the simulation technique employed.  Many 
approaches in this category are variants on the network of masses 
and springs, whose behavior is governed by spring constants that 
can’t be directly determined for real materials.  In general, these 
methods are thus not accurate in an absolute sense.  However, 
many approaches in this category can be simulated at interactive 
rates even for high-resolution data, and these approaches often 

Input mesh Input mesh size 
(triangles) 

Long axis resolution  
(tets) 

Output mesh size  
(tets) 

Tetrahedralization time 
(s) 

bunny 70k 30 35840 0.153
bunny 70k 75 478140 1.98
bunny 70k 135 2645120 10.139
bunny 70k 165 4769080 18.287
gear 1k 30 20780 0.101
gear 1k 75 271350 1.132
gear 1k 135 1434065 5.789
gear 1k 165 2504240 9.961
happy 16k 30 10100 0.057
happy 16k 75 126610 0.562
happy 16k 135 662745 2.7
happy 16k 165 1178725 4.74
dragon 203k 30 12750 0.083
dragon 203k 75 158370 0.772
dragon 203k 135 820305 3.57
dragon 203k 165 1453270 6.042

 

Table 1.  Tetrahedralization time for the meshes shown in Figure 3, at various output mesh resolutions. 
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parallelize extremely well, offering further potential speedup as 
parallel hardware becomes increasingly common. 

In short, the decision to use one approach or the other for a 
particular application is a tradeoff between realism and 
performance, and interactive simulations are often constrained to 
use non-constitutive techniques. 

For applications in entertainment or visualization, simulation 
based on hand-calibrated constants may be adequate.  But for 
high-precision applications, particularly applications in virtual 
surgery, a deformation model is expected to behave like a specific 
real material.  It is often critical, for example, to teach absolute 
levels of force that are necessary to achieve certain deformations, 
and it is often critical to differentiate among tissue types based on 
compliance.  Thus roughly-calibrated material properties are 
insufficient for medical applications. 

Furthermore, traditional mass-spring systems are usually 
expressed in terms of stiffnesses for each spring, so the only way 
to vary the behavior of a material is to vary those stiffnesses.  For 
any significant model, this translates into many more free 
parameters than a content developer could reasonably calibrate by 
hand. 

Even if sufficient manual labor is available to manually calibrate 
canonical models, this calibration would generally be object-
specific, as much of the deformation properties of a mass-spring 
network are embedded in the topology and geometry of the 
network [10].  Therefore calibrated spring constants cannot be 
directly transferred among objects, even objects that are intended 
to represent the same material. 

The present work aims to run this calibration automatically, using 
the result of a finite element analysis as a ground truth.  While 
calibration results still cannot be generalized across objects, the 
calibration runs with no manual intervention and can thus be 
rapidly repeated for arbitrary sets of objects. 

3.2 Homogeneous Calibration 
The following are assumed as inputs for the calibration process: 

• A known geometry for the object to be deformed, generated 
according to the procedure outlined in Section 2. 

• A known set of loads – defined as constant forces applied at 
one or more mesh vertices – that are representative of the 
deformations that will be applied to the object interactively.  
In practice, these loads are acquired using a haptic 
simulation environment and an uncalibrated object.  Note 
that a single “load” may refer to multiple forces applied to 
multiple (potentially disjoint) regions of the mesh. 

• Constitutive elastic properties (Poisson’s coefficient and 
Young’s modulus) for the material that is to be represented. 

The supplied constitutive properties are used to model the 
application of the specified loads using an implicit finite element 
analysis, providing a ground truth deformation to which non-
constitutive results can be compared.  This quasi-static analysis 
neglects dynamic effects; extension to dynamics is an area for 
future work. 

The same loads are then applied to the same geometry using a 
non-constitutive simulation, and the simulation is allowed to 

come to steady-state (a configuration in which elastic forces 
precisely negate the applied forces).  For the implementation 
presented in Section 3.3 we use the deformation model presented 
in [54], but for this discussion we will treat the simulation 
technique as a black box with a set of adjustable parameters. 

There are, in most cases, large subsets of the parameter space that 
will not yield stable deformations.  In traditional mass-spring 
systems, for example, inappropriately high constants result in 
instability and oscillation, while inappropriately low constants 
result in structural collapse.  In either case, local variation in 
parameters cannot be reliably related to variation in deformation.  
Optimization will proceed most rapidly if it begins with a baseline 
deformation that can be used to quickly discard such regions in 
the parameter space.  Therefore, before beginning our 
optimization, we coarsely sample the parameter space for a fixed 
number of simulations (generally 100) and begin our optimization 
with the optimal set among these samples, as per [7] (our 
optimality metric follows).  If none of our samples yield a stable 
deformation, we randomly sample the space until a stable 
deformation is obtained. 

We then compute an error metric describing the accuracy of this 
parameter set as the surface distance between the meshes resulting 
from constitutive and non-constitutive deformation: 

nvertices

ipip
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nvertices
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nonconstconst

L
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∑
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…where eL(φ) is the error (inaccuracy) for a parameter set φ and 
load L, nvertices is the number of vertices in our mesh, pconst(i) is 
the position of vertex i following constitutive deformation, and 
pnonconst(i) is the position of vertex i following non-constitutive 
deformation with parameter set φ.  Note that the non-constitutive 
deformation is computed once at the beginning of the 
optimization procedure and is not repeated. 

This error metric assumes a one-to-one correspondence between 
vertices in the two meshes; in practice this is the case for the 
implementation presented in Section 3.3, but were this not the 
case, the lower-resolution mesh could be resampled at the 
locations of the higher-resolution mesh’s vertices.  The deformed 
positions of the resampled vertices could then be obtained by 
interpolating the deformed positions of the neighboring vertices in 
the lower-resolution mesh after deformation (this is analogous to 
interpolating displacements by free-form deformation [46]). 

When multiple loads (to be applied separately) have been defined, 
we average the resulting errors over those loads to define an 
accuracy metric for a parameter set: 

∑
=

=
nloads

L
LeE

1

)()( ϕϕ  

…where E(φ) is the average error for the parameter set φ and 
nloads is the number of separate loads to apply.  In practice 
nloads is often 1, but we will continue to use the more general 
E(φ) notation that allows for multiple loads. 
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The goal of our optimization is thus to find the parameter set φ 
that minimizes E(φ): 

)(minarg ϕ
ϕ

E=Φ  

…where Ф is our output parameter set, representing the best 
match to the supplied constitutive parameters for the specified 
deformations, and φ is bounded by user-specified upper- and 
lower-bounds, which generally do not vary from problem to 
problem. 

We solve this constrained minimization problem through 
simulated annealing [30] (SA), a stochastic optimization 
technique that follows local gradients in a problem space to arrive 
at minima of the energy function, but periodically jumps against 
the gradient to avoid local minima.  In particular, we use the 
adaptive simulated annealing [26] (ASA) variant on SA, which 
automatically adjusts the annealing parameters over time to 
converge more quickly than traditional SA. 

For very simple linear problems, such as identifying the optimal 
spring constant for a single tetrahedron being stretched in a single 
direction, we have also employed gradient descent, which is 
extremely efficient, but complex error landscapes prevent this 
approach for significant problems.  We will discuss further 
applications for simpler approaches in Section 5. 

At the completion of the simulated annealing procedure, we will 
have a non-constitutive parameter set Ф that optimally matches 
our non-constitutive deformation to our constitutive deformation.  
The annealing procedure may take a significant amount of time to 
complete, but it proceeds with no manual intervention and can 
thus be efficiently used to prepare numerous deformable models. 

3.3 Implementation 
We have implemented the described calibration process using an 
implicit solver for our constitutive deformation and the method of 
[54] for our non-constitutive deformation.  The finite element 
package Abaqus [1] is used for reference deformations, and our 
interactive deformation model is implemented in C++ using 
CHAI [16] for visualization.  Deformation results from both 
packages are collected in Matlab [33], and optimization is 
performed with the ASA package [27] through the ASAmin 
wrapper [44].  Gradients are estimated by finite differencing. 
The selected deformation model is described in more detail in 
Section 4; the key point for this discussion is that nodal forces are 
computed based on four deformation parameters: a volume 
preservation constant kv (defined for each tetrahedron), an area 
preservation constant ka (defined for each face), a length 
preservation constant kd (defined for each edge), and a viscous 
damping force kdamp.  These four values are the free parameters 
for our optimization.  For the results presented in Section 3.4, 
they are taken to be homogeneous throughout the material.  
Nonhomogeneity will be introduced in Section 3.5.  In practice, 
the viscous damping force is always uniform and is allowed to 
vary only coarsely; once it is calibrated to a reasonable value for a 
problem, variations should affect the time required to reach 
steady-state but not the final deformation. 
Since we use a quasi-static, implicit simulation for constitutive 
deformation, we require steady-state results from our non-
constitutive simulation as well.  A simulation is determined to be 

at steady-state when the maximum and mean vertex velocities and 
accelerations are below threshold values for a predetermined 
amount of time.  These values are defined manually but do not 
vary from problem to problem.  Simulations that do not reach 
steady-state within a specified interval are assigned an error of 
DBL_MAX. 

3.4 Results: Homogeneous Calibration 
We will demonstrate the effectiveness of this approach through a 
case study, using the problem depicted in Figure 6.  Here the base 
of the gear model is fixed in place (nodes indicated in blue), and 
opposing forces are applied to the “front” of the gear.  This load 
will tend to “twist” the gear around its vertical axis.  The 
simulated object is defined to be approximately 2 meters wide, 
with 50 pounds of force applied at each of the two load 
application points.  The constitutive simulation uses a Young’s 
modulus of 100kPa and a Poisson’s coefficient of 0.45 . 

Figure 7 graphically displays the results of the calibration 
procedure for this problem.  The undeformed mesh is shown in 

Figure 6. The deformation problem analyzed in section 3.4. 
Nodes highlighted in blue are fixed in place; green arrows 
define the applied load. 

(a) (b)

(c) (d)

(a) (b)

(c) (d)

Figure 7. Results after calibration for the problem shown in 
Figure 6.  Each subfigure shows a “top view” of the model 
introduced in Figure 6.  (a) Undeformed model.  (b) Ground 
truth deformation (resulting from finite element analysis).  (c) 
Baseline non-constitutive deformation (hand-selected 
constants).  (d) Calibrated non-constitutive deformation.  (b) 
and (d) are nearly identical, indicating successful calibration.
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Figure 7a.  For comparison, the result of a non-constitutive 
deformation using constants selected through several minutes of 
manual calibration is presented in Figure 7c.  Note that this is not 
an unreasonable or inconsistent response to the applied loads.  
Figures 7b and 7d show the results of constitutive deformation 
and calibrated non-constitutive deformation, respectively.  The 
two models are nearly identical, indicating a successful 
calibration.  Using the error metric described in section 3.2, the 
error was reduced from 0.9 (uncalibrated) to 0.08 (calibrated).  

Figure 8 looks more closely at the optimization trajectory during 
this calibration.  The optimization proceeds from left to right, 
with each point representing a simulation pass.  Higher values on 
the y-axis indicate less accurate deformation.  The highlighted 
area indicates the optimization’s efficient use of the error gradient 
for rapid descent from the initial error result.  This indicates that a 
bounded optimization, for which the user specified an acceptable 
error bound, rather than waiting for a global optimum, would 
proceed extremely rapidly.  This is likely to be the most practical 
usage model for this approach. 

The “jittery” appearance of the error plot, with numerous 
simulations resulting in very large errors, results from the 
annealing process’s tendency to occasionally jump from a “good” 
region of the parameter space to an unexplored region of the 
parameter space.  These jumps often result in unstable 
simulations, which are assigned a high error. 

Having obtained calibrated constants for this problem, we would 
like to demonstrate that these constants translate to another load 
applied to the same object; i.e. we’d like to confirm that our 
results are not overfit to the particular load on which the system 
was calibrated.   

Figure 9 demonstrates a new load applied to the same model, 
which will produce an entirely different deformation and will 
stress the mesh along a different axis.  Figure 10 shows the result 
of transferring the calibration to this problem.  Again we present 
the undeformed mesh and a “baseline” mesh (constants selected 

quickly by hand) for comparison.  We again see an excellent 
correlation between Figure 10b and Figure 10d, indicating a 
successful calibration transfer.  The RMS vertex error was 
reduced from 1.0 to 0.1 in this case.  The resulting error was thus 
only slightly higher than the residual self-calibration error 
represented in Figures 7 and 8. 

3.5 Nonhomogeneous Calibration 
The results presented so far were based on homogeneous 
materials, i.e. the four calibrated constants were uniform 
throughout the object.  There are, however, two motivations for 
allowing inhomogeneous deformation constants. 

The first is to allow calibration to inhomogeneous reference 
objects.  An object whose material properties vary in space 
clearly cannot be represented with homogeneous deformation 
parameters.  This is particularly relevant for applications in virtual 
surgery, where tissues may have material properties that vary 
according to microanatomy or pathology, or may represent 
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Figure 8. Optimization trajectory for the calibration shown in 
Figure 7.  Each error value is shown in blue; the green line 
represents the lower envelope of the blue line, or in other 
words the best result found so far at any point in the 
optimization process.  The region highlighted in red indicates 
the rapid initial gradient descent.  The y-axis is compressed to 
improve visibility; the initial error is 0.9, and the maximum 
error (assigned to non-terminating simulations) is 
DBL_MAX. 

Figure 9. Calibration verification problem.  Nodes highlighted 
in blue are fixed in place; green arrows define the applied 
load. 

(a) (b)

(c) (d)

(a) (b)

(c) (d)

Figure 10. Calibration verification results.  (a) Undeformed 
model.  (b) Ground truth deformation (resulting from finite 
element analysis).  (c) Baseline non-constitutive deformation 
(hand-selected constants).  (d) Calibrated non-constitutive 
deformation, using the results obtained from the problem 
presented in Figure 6.  (b) and (d) are nearly identical, 
indicating successful calibration transfer to the new problem.
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compound materials such as muscle coupled to bone. 

A second motivation for allowing inhomogeneous deformation 
constants is to compensate for deformation properties that are 
artificially introduced by the geometry and topology of the 
simulation mesh.  van Gelder has shown, for the two-dimensional 
case, that uniform stiffness properties fail to simulate a uniform 
object accurately [56].  It is also known that mesh geometry and 
topology can introduce undesired deformation properties into 
mass-spring simulations [10].  We would thus like to allow 
constants to vary within our calibrated mesh, even when it is 
intended to represent a homogeneous object. 

Previous approaches to nonhomogeneous deformation calibration 
(e.g. [9],[39]) have allowed stiffness constants to vary at each 
node, which links optimization complexity directly to mesh 
resolution and presents an enormous optimization landscape. 

We present a novel approach to nonhomogeneous parameter 
optimization, which decouples optimization complexity from 
simulation complexity and mesh resolution.  Specifically, rather 
than presenting the per-node deformation parameters directly to 
the optimizer, we allow the optimizer to manipulate deformation 
parameters defined on a fixed grid; those parameters are then 
interpolated by trilinear interpolation to each node before every 
simulation pass.  This imposes some continuity constraints on the 
resulting parameter set (nearby vertices will have similar 
parameter values), but can greatly speed up the optimization 
process, making possible the calibration of large meshes that 
would be prohibitively expensive to optimize per node. 

Figure 11 shows an example of the decoupling of the optimization 
and simulation meshes.  The optimization mesh can be arbitrarily 
simplified to allow, for example, variation of parameters along 
only one axis of the object (using a k × 1 × 1 optimization grid). 

As a preprocessing step, each simulation vertex is associated with 
a set of weights defining the optimization nodes that affect its 
parameter set.  Specifically, we assign weights to the eight 
optimization nodes that form a cube around each simulation 
vertex.  We will refer to the coordinates of those nodes as 

⎣ ⎦ ⎡ ⎤ ⎣ ⎦ ⎡ ⎤ ⎣ ⎦ ⎡ ⎤zzyyxx ,,,,, , representing the upper and lower 
bounds of this vertex’s cell in the optimization grid.  The 
coordinates of the eight nodes of this cell are thus: 

⎣ ⎦ ⎣ ⎦ ⎣ ⎦
⎣ ⎦ ⎣ ⎦ ⎡ ⎤
⎣ ⎦ ⎡ ⎤ ⎣ ⎦
⎣ ⎦ ⎡ ⎤ ⎡ ⎤
⎡ ⎤ ⎣ ⎦ ⎣ ⎦
⎡ ⎤ ⎣ ⎦ ⎡ ⎤
⎡ ⎤ ⎡ ⎤ ⎣ ⎦
⎡ ⎤ ⎡ ⎤ ⎡ ⎤zyx

zyx
zyx
zyx
zyx
zyx
zyx
zyx

,,7
,,6
,,5
,,4
,,3
,,2
,,1
,,0

 

We then define the cell-relative position of vertex v along each 
axis as: 

⎣ ⎦ ⎡ ⎤ ⎣ ⎦
⎣ ⎦ ⎡ ⎤ ⎣ ⎦
⎣ ⎦ ⎡ ⎤ ⎣ ⎦ )zz)/(z(v.zv

)yy)/(y(v.yv
)xx)/(x(v.xv

zrel

yrel

xrel

−−=

−−=
−−=

 

And the trilinear interpolation weights for this vertex associated 
with each optimization node are: 

))()((7
)1)()((6
))(1)((5

)1)(1)((4
))()(1(3

)1)()(1(2
))(1)(1(1

)1)(1)(1(0

zrelyrelxrel

zrelyrelxrel

zrelyrelxrel

zrelyrelxrel

zrelyrelxrel

zrelyrelxrel

zrelyrelxrel

zrelyrelxrel

vvv
vvv
vvv

vvv
vvv

vvv
vvv

vvv

−
−

−−
−

−−
−−

−−−

 

Calibration nodes that do not affect parameter values at any 
vertex (for example, the upper-left calibration node in Figure 11) 
are discarded and are not used for optimization.  In practice, 
weights are assembled into a (highly sparse) matrix of size 
[number of calibration nodes] × [number of vertices] that can be 
multiplied by a vector of values of length [number of calibration 
nodes] for each parameter to quickly compute the parameter value 
at each vertex by matrix-vector multiplication. 

Parameter values defined on the optimization grid cannot be used 
directly for simulation, so to compute a parameter value pv for a 
particular simulation vertex v before a simulation pass, we 
compute the weighted sum: 

i
i

iv pwp ∑
=

=
7

0
 

…where wi is the weight associated with node i, as defined above 
(node numbering here is within a cell, not over the entire grid) 
and pi is the parameter value at node i (supplied by the optimizer). 

In summary, we learn deformation parameters on a fixed grid, 
which is generally more sparse than the simulation mesh, and 
interpolate values to simulation nodes at each evaluation of the 
error metric.  This decouples optimization complexity from mesh 
complexity. 

 
Figure 11. Decoupled simulation and optimization meshes.
The optimizer adjusts constants on the larger grid (blue
nodes), which are interpolated to the simulation mesh (red)
before each simulation pass. 
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3.6 Results: Nonhomogeneous Calibration 
We suggested in Section 3.5 that nonhomogeneous calibration 
should improve calibration results even for homogeneous objects.  
We will thus revisit the problems presented in Section 3.4 and 
assess the benefit of nonhomogeneous calibration.   

Figure 12 shows the error reduction for “self-calibration” (the 
residual error at the completion of optimization) for the two 
“gear” problems introduced in Section 3.5.    A significant error 
reduction is observed in both cases, indicating that the optimizer 
is able to use the additional degrees of freedom provided through 
nonhomogeneity.  In both cases, a grid resolution of 5 × 5 × 3 was 
used, where the shortest axis of the gear (the vertical axis in 
Figure 7a) was assigned to the shortest axis (3 nodes) of the 
calibration grid. 

Having established the benefit of nonhomogeneous calibration for 
homogeneous objects, we would like to demonstrate the ability of 
our calibration technique to learn variations in material properties 
within nonhomogeneous objects. 

Figure 13 shows the results of a nonuniform calibration for a cube 
that was modeled with a uniform Poisson’s coefficient (0.499) but 
included two regions with different Young’s moduli (50kPa and 
1000kPa) (Figure 13a).  An applied load (Figure 13b) resulted in 
virtually no displacement in the “hard” (bottom) portion of the 
object according to finite element analysis (Figure 13c).  This 
reference deformation was used to learn constants on an 
interpolation grid, which converged to the results shown in Figure 
13f (values are interpolated to vertices in the figure).  Figure 13f 
shows the distribution of kd; ka and kv showed similar 
distributions, and the damping constant was treated as uniform for 
this calibration.  The resulting non-constitutive deformation 
(Figure 13e) can be contrasted with the optimal result obtained 
using homogeneous values for all four constants (Figure 13d). 

Figure 14 summarizes the calibration of deformation parameters 
for a more complex model.  Here a grid of 54 nodes is used to 
calibrate a simulation mesh of over 700 nodes. 

4. RENDERING AND SIMULATION 
We have now discussed our approaches to preparing and 
calibrating tetrahedral meshes and deformation parameters for 
interactive simulation.  This section reviews our selected 
simulation approach, a reformulation of the method presented in 
[54]) and discusses our approach to mesh skinning during 
simulation. 
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Figure 12. Improvement in self-calibration due to
nonhomgeneous calibration.  For each problem, the residual
calibration errors following homogeneous and
nonhomogeneous calibration are indicated in blue and purple,
respectively. 

E = 1000kPa (hard)
E = 50kPa (soft)

(a) (b)

(c) (d)

(e)

kd = 40298

kd = 273

(f)

E = 1000kPa (hard)
E = 50kPa (soft)
E = 1000kPa (hard)
E = 50kPa (soft)

(a) (b)

(c) (d)

(e)

kd = 40298

kd = 273

(f)
Figure 13.  Results following a nonhomogeneous calibration. 
The object was modeled with a nonuniform Young’s modulus 
(a), and subjected to the load indicated in (b), with blue 
highlights indicating zero-displacement constraints.  (c) The 
resulting deformation according to finite element analysis 
(note that the load is absorbed almost entirely in the “soft” 
region).  (d) The resulting deformation according to a 
calibrated, non-constitutive model with homogeneous
parameter values.  (e) The resulting deformation according to 
a calibrated, non-constitutive model with nonhomogeneous
parameter values; note that the load is correctly absorbed in 
the top part of the object.  (f) The distribution of kd values 
after calibration. 
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4.1 Simulation 
The deformation model presented in [54] addresses important 
limitations in traditional mass-spring systems.  In particular, local 
volume-preservation and area-preservation forces, computed for 
each tetrahedron and each tetrahedral face, respectively, 
complement traditional length-preservation forces computed 
along each tetrahedral edge.  This model enforces local volume 
conservation, which approximately constrains global volume, and 
allows a much wider variety of material behaviors to be expressed 
than a traditional mass-spring system. 
The original presentation of this approach [54] presents these 
constraint forces as analytic derivatives of energy functions.  We 
will present equivalent geometric interpretations; our 

implementation is based on these geometric representations of the 
constraint forces. 
 
DISTANCE PRESERVATION 
The energy function ED associated with the distance-preservation 
force between two connected vertices vi and vj is [54]: 

2

0

0

2
1),( ⎟

⎟

⎠

⎞

⎜
⎜

⎝

⎛ −−
=

D

Dvv
kvvE ij

djiD  

…where D0 is the rest length of this edge (computed in 
preprocessing) and kd is the distance-preservation constant 
associated with this edge. 
The force applied to vertex vi to minimize this energy is the 
traditional spring force: 

( )
⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

−

−
−−=

ij

ij
ijdiD vv

vv
DvvkvF 0 )(  

Intuitively, energy is minimized by shortening or lengthening the 
spring to its rest length, so we apply a force toward the opposing 
vertex, whose magnitude depends on the edge’s deviation from 
rest length (Figure 15a). 
In practice, edge lengths are computed before any forces are 
calculated, so they can be accessed by each vertex without 
recomputation. 
 

vi vj

vi

vj vk

vi

vj vk

vl

(a)

(b)

(c)

vi vjvi vj

vi

vj vk

vi

vj vk

vi

vj vk

vl

vi

vj vk

vl

(a)

(b)

(c)

 
Figure 15. Geometric representations of energy derivatives 
with respect to vertex vi, i.e. the direction in which each force 
should be applied to vertex vi.  (a) Distance preservation.  (b) 
Area preservation.  (c) Volume preservation.  The double-
headed arrow indicates force direction in each case.  

kd = 5e6kd = 1e5

E = 1000kPa (hard)
E = 50kPa (soft)

(a)

(b)

(d) (e)

(c)

(f)
kd = 5e6kd = 1e5

E = 1000kPa (hard)
E = 50kPa (soft)
E = 1000kPa (hard)
E = 50kPa (soft)

(a)

(b)

(d) (e)

(c)

(f)

Figure 14.  Calibrated material properties for a more
complex mesh.  (a) The ground truth (constitutive) set of
material properties for the object; the two regions have
different values for Young’s modulus.  (b) The tetrahedral
mesh used to simulate this model, generated as per Section 1,
and the coarse optimization grid used to calibrate this mesh;
the grid is 9×3×3 nodes, or 8×2×2 cells.  (c) The problem used
to calibrate this model; blue highlights indicate zero-
displacement constraints, and green arrows indicate applied
forces.  (d) and (e) show the calibrated values for kd (ka and kv
showed similar patterns), displayed on the rendering and
simulation meshes, respectively, with the scale of kd values
indicated in (f).  The learned regions of high and low kd
correspond closely to the regions of high and low Young’s
modulus in (a). 
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AREA PRESERVATION 
The energy function EA associated with the area-preservation 
force for the triangle consisting of vertices vi, vj, and vk is [54]: 
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kvvvE

ikij
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…where A0 is the rest area of this triangle (computed in 
preprocessing) and ka is the area-preservation constant associated 
with this triangle. 
To understand the force we should apply to vertex vi  to minimize 
this energy, we will view this triangle with the edge (vj,vk) on the 
horizontal axis (Figure 15b).  The area of this triangle is equal to 
½ times its baseline ( |vk – vj| ) times its height.  Since the baseline 
of the triangle cannot be affected by moving vertex vi, the 
gradient of the triangle area in terms of the position of vi is clearly 
along the vertical axis (maximally affecting the height of the 
triangle).  We thus compute this perpendicular explicitly to find 
the direction of the area-preservation force to apply to vertex vi: 
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Here we have just decomposed the vector (vi – vj) into 
components parallel to and perpendicular to (vk – vj) and 
discarded the parallel component, then normalized the result 
(areagradient) to get our force direction. 
The magnitude of this force should be proportional to the 
difference between the current and rest areas of the triangle.  We 
compute the area as half the cross-product of the edges, i.e.: 

( ) 0)()(
2
1)( Avvvvvforcemag ijikiA −−×−=  

…where A0 is the rest area of this triangle, computed in 
preprocessing. 
And we scale the final force by the area-preservation constant ka 
associated with this triangle: 

)()()( iAiAaiA vforcedirvforcemagkvF ••=  

In practice, triangle areas are computed before any forces are 
calculated, so they can be accessed by each vertex without 
recomputation (area computation also yields triangle normals, 
which are used for computing volume-preservation forces). 
 
VOLUME  PRESERVATION 
The energy function EV associated with the volume-preservation 
force for the tetrahedron consisting of vertices vi, vj, vk, and vl is 
[54]: 
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…where V0 is the rest volume of this tetrahedron (computed in 
preprocessing) and kv is the volume-preservation constant 
associated with this tetrahedron. 
To understand the force we should apply to vertex vi to minimize 
this energy, we will view this tetrahedron with the face (vj,vk,vl) 
on the horizontal plane (Figure 15c).  The volume of this 
tetrahedron is equal to 1/3 times its base area ( ½ ( (vl – vj) × (vk – 
vj) ) ) times its height.  Since the base area of the tetrahedron 
cannot be affected by moving vertex vi, the gradient of the 
tetrahedron volume in terms of the position of vi is clearly along 
the vertical axis (maximally affecting the height of the 
tetrahedron).  We thus compute this perpendicular (the normal to 
the triangle (vj,vk,vl) ) explicitly to find the direction of the 
volume-preservation force to apply to vertex vi: 

( ) ( )( )
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Here we have just computed a vector normal to the triangle 
(vj,vk,vl) (volumegradient) and normalized the result. 
The magnitude of this force should be proportional to the 
difference between the current and rest volumes of the 
tetrahedron.  We compute the volume of the tetrahedron and 
subtract the rest volume: 

( ) ( )( ) 0)()(
6
1)( Vvvvvvvvforcemag ilikijiV −−×−•−=  

…where V0 is the rest area of this triangle, computed in 
preprocessing. 

(a)

(b)

(c)

(a)

(b)

(c)

 
Figure 16. Skinning a rendering mesh on a simulation mesh. 
(a) Original mesh, used for interactive rendering.  (b) 
Tetrahedral mesh, used for interactive simulation.  (c) 
Rendering mesh skinned on simulation mesh (with cutaway 
view).  
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And we scale the final force by the volume-preservation constant 
kv associated with this tetrahedron: 

)()()( ivivviV vforcedirvforcemagkvF ••=  

In practice, tetrahedral volumes are computed before any forces 
are calculated, so they can be accessed by each vertex without 
recomputation. 
As is described in [54], these forces are accumulated for each 
vertex and integrated explicitly using Verlet integration.  A 
viscous damping force is also applied to each vertex according to 
a fourth material constant kdamp. 

4.2 Mesh Skinning 
The tetrahedral mesh used for simulation will generally present a 
lower-resolution surface than the original mesh; rendering this 
surface directly significantly limits rendering quality (compare 
Figure 16a to Figure 16b).  It is thus desirable to decouple the 
rendering and simulation meshes by “skinning” a rendering mesh 
onto a simulation mesh (Figure 16c). 

This type of mesh skinning is common for applications that have 
a low-resolution rigid skeleton for animation and wish to deform a 
rendering mesh to reflect the movements of the underlying bones, 
an operation that can be performed on commodity graphics 
hardware [43].  However, such approaches assume a low-degree-
of-freedom underlying skeleton and are thus not suitable for 
skinning complex meshes.  Furthermore, mesh skinning usually 
involves manual assignment of vertices to one or more bones, 
which is not practical when the set of independently deforming 
components is very large.  In other words, manually assigning 
vertices to be controlled by specific tetrahedra would be 
prohibitively time-consuming. 

We thus present an automatic mechanism for skinning a rendering 
mesh onto a simulation mesh.  Our approach is similar to free-
form deformation [46], which determines the movement of 
vertices in a deforming space defined by a grid of control points.  
In our case, the physically-based deformation of the tetrahedral 
mesh defines a deforming space, and the vertices of the rendering 
mesh are translated accordingly. 

Specifically, we perform a preprocessing step that begins with 
defining a “vertex-space” coordinate frame for each vertex vs on 
the surface of the simulation mesh.  We assume that surface 
vertices in the simulation mesh are tagged as such during the 
mesh generation process (Section 2).  The vertex-space coordinate 
frame Fvs, with origin at vs, is defined by the three reference 
vectors Fx, Fy, and Fz, which are created as follows and are 
orthogonal by construct (Figure 17): 

• Fx: the surface normal at vs.  Surface normals are computed 
before and during simulation by averaging the face normals 
of all triangles that contain vs. 

• Fy: The component of first “surface edge” connected to vs 
that is perpendicular to the normal at vs.  A “surface edge” is 
defined as an edge that connects to another vertex that is on 
the surface of the mesh.  This component is computed as 
follows: 
 

( ) ( )( )( )NNvvvvF soppositesoppositey •−−−=  

 
…where vs is the vertex at which we’re defining a frame, 
vopposite is the simulation vertex at the other side of the 
selected surface edge, and N is the unit normal vector at Vs.  
Fy approximates a local surface tangent vector. 

• Fz: The cross-product of Fx and Fy. 

Fx, Fy, and Fz are each normalized to yield an orthonormal basis.  
Note that in practice, coordinate frames are not defined until 
vertices are used in subsequent steps, so that coordinate frames 
are not computed for vertices that are not used for skinning.  We 
have presented coordinate-frame definition first for clarity. 

After defining coordinate frames, we place all simulation vertices 
on the surface of the simulation mesh in a kd-tree [5]. 

For each vertex on the rendering mesh, we then find the nearest 
nneighbors vertices on the surface of the simulation mesh.  
Higher values for nneighbors result in more expensive rendering 
but more accurate rendering mesh deformation.  In practice we 
generally set nneighbors = 5. 

For each vertex vr on the rendering mesh, and each of its nearby 
vertices vs on the simulation mesh, we then compute the world-
frame offset of vr relative to vs, and rotate it into the coordinate 
frame Fvs defined at vs: 
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…where Fx, Fy, and Fz are the components of Fvs, as computed 
above.  We store offsetvertex(vr,vs) for each of the nneighbors vs’s 
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vopposite

F
x = surface norm

al at v
s

surface edge

Fy = surface edge projected 
perpendicular to normal

Fz = Fx × Fy
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x = surface norm
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s

surface edge

Fy = surface edge projected 
perpendicular to normal

Fz = Fx × Fy

vs

vopposite
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x = surface norm

al at v
s

surface edge

Fy = surface edge projected 
perpendicular to normal

Fz = Fx × Fy

Figure 17. Vertex-space coordinate frame definition.  The 
triangles shown in gray, and their edges, are not used 
explicitly for defining this vertex’s coordinate frame, but will 
influence the frame through their influence on the surface 
normal. 
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associated with vr.  We also compute, for each offsetvertex(vs,vr), a 
weighting factor defined by the distance between vs and vr (closer 
vertices should have more influence over vr).  The weighting 
factor for a particular (vr,vs) is computed as: 
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…where the denominator here is a normalization factor ensuring 
that the nneighbors weights add up to 1. 

The indices of all weighted vertices, the weight values, and the 
offsetvertex values are stored for each rendering vertex vr. 

During each frame of interactive rendering, for each vertex vr, we 
look up the indices and deformed positions of each weighted 
vertex vs.  Then to find the position at which vr should be 
rendered, we recompute each coordinate frame Fvs exactly as 
described above (including normalization) using the deformed 
position of vs, yielding new Fx, Fy, and Fz vectors (which we’ll 
refer to as Fx’, Fy’, and Fz’).  The new position for vr based on a 
simulation vertex vs is then computed as: 

zoffsetFyoffsetFxoffsetFvvp vertexzvertexyvertexxsr ...),( •′+•′+•′=  

The coordinate frame is based on the local surface normal and the 
local tangent vector (the chosen surface edge), and thus rotates 
with the space surrounding vs. 

The final position for vr is the weighted average of the position 
“votes” from each vs: 
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4.3 Implementation and Results 
The proposed simulation approach is a reformulation of [54], so 
we refer to their results for detailed deformation results.  The 
proposed skinning approach was implemented using CHAI [16] 
for visualization and the ANN library [40] for kd-tree searching.  
With N=5 and a the simulation and rendering meshes shown in 
Figure 16 (50,000 rendered faces and 13,000 simulated 
tetrahedra), simulation proceeds at 200fps, with rendering taking 
place every 10 simulation frames (20fps). 

Skinning results are best communicated by video, so we have 
made a video of our skinning approach, applied during interactive 
deformation, available at: 

http://cs.stanford.edu/~dmorris/video/dragon_deforming.avi 

 

5. CONCLUSION AND FUTURE WORK 
We have presented an automated pipeline for interactively 
deforming an object originally defined as a surface mesh.  
Pipeline stages included mesh generation, calibration to a 

constitutive model using simulated annealing, and 
simulation/rendering. 

5.1 Future Work: Mesh Generation 
Future work on mesh generation will focus on generating 
nonuniform meshes that provide more resolution in more detailed 
regions of the surface model; the AABB hierarchy that we already 
create during voxelization provides a multiresolution 
representation of the object that translates naturally into a voxel 
array.  Calibration (Section 3) will compensate for simulation 
artifacts resulting from nonuniform mesh resolution.  Also, 
simulations that involve topology changes (cuts and fractures) and 
large deformations may benefit from dynamic background re-
meshing, another area for future research. 

5.2 Future Work: Calibration 
Our calibration procedure is currently naïve to the deformation 
model and treats each error function evaluation as a black box.  
Calibration would be greatly sped up by automatically and 
dynamically generating loads that probe sensitive, high-
resolution, or user-highlighted regions of the mesh.  Also, error 
gradients are currently estimated by finite differencing; more 
sophisticated approaches would adjust constants more efficiently 
using ad hoc heuristics that predict the effects of parameter 
changes (for example, higher stiffness constants are likely to 
reduce overall deformation). 
Additionally, a more sophisticated error metric would penalize 
shape deformation but allow rigid body transformations; the 
current per-vertex-distance metric penalizes all errors equally.  
The calibration could also derive a more accurate seed point for 
optimization by using simple, canonical models (for example, 
homogeneous cubes or single tetrahedra) to obtain approximate 
canonical values for deformation constants representing particular 
material properties. 
Non-geometric error metrics that incorporate stress or surface 
tension would also improve the applicability of our approach to 
applications that require force information, e.g. simulations 
incorporating haptics or fracture/cut modeling. 
Another application of the presented approach is topology 
optimization.  The ability to find optimal constants for a given 
topology can be generalized to iteratively adjust topology, to 
minimize mesh size and simulation complexity while still 
satisfying a given error bound. 

We would also like to generalize our calibration approach to more 
complex deformation models, particularly incorporating 
dynamics, nonlinear stress/strain relationships, plasticity, and 
topology changes. 

Critically, we also stress that we have presented calibrations for 
only a limited set of models without specific calibration to in vivo 
data.  We hope that the present work on mesh calibration will 
inspire additional experimentation by the community in collecting 
in vivo deformation data and calibrating interactive models using 
our techniques.  Preliminary work within our own research group 
[20] has also begun an exploration into in vivo data collection, 
with the goal of using this data to calibrate models for interactive 
surgical simulators. 
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5.3 Future Work: Parallelization 
Finally, all of the approaches presented in this paper lend 
themselves extremely well to parallelization, and are expected to 
benefit from parallel implementations.  Voxelization can be 
parallelized across regions at a high level, or across AABB nodes 
at a finer level.  A custom annealing procedure could make use of 
multiple, simultaneous samples in the parameter space, and would 
be further optimized by a parallelized version of the simulation 
itself, as per [23].  The skinning approach presented in Section 4 
is particularly well-suited to parallel implementation on graphics 
hardware, especially when using a simulation technique such as 
[23], [53], [37], or [38], which place vertex positions in a GPU-
resident render target that can be accessed from a vertex shader 
used to transform the vertices of the rendering mesh. 

Supplemental Material 
The mesh generation approach presented in Section 2 is available 
in binary form at: 

http://cs.stanford.edu/~dmorris/voxelizer 

A video of our mesh skinning approach is available at: 

http://cs.stanford.edu/~dmorris/video/dragon_deforming.avi 
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