
 i

HAPTICS AND PHYSICAL SIMULATION

FOR VIRTUAL BONE SURGERY

A DISSERTATION

SUBMITTED TO THE DEPARTMENT OF COMPUTER SCIENCE

AND THE COMMITTEE ON GRADUATE STUDIES

OF STANFORD UNIVERSITY

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY

Dan Morris

August 2006

 ii

© Copyright by Dan Morris 2006

All Rights Reserved

 iii

I certify that I have read this dissertation and that, in my opinion, it is fully adequate

in scope and quality as a dissertation for the degree of Doctor of Philosophy.

 (Kenneth Salisbury) Principal Advisor

I certify that I have read this dissertation and that, in my opinion, it is fully adequate

in scope and quality as a dissertation for the degree of Doctor of Philosophy.

 (Sabine Girod)

I certify that I have read this dissertation and that, in my opinion, it is fully adequate

in scope and quality as a dissertation for the degree of Doctor of Philosophy.

 (Federico Barbagli)

Approved for the University Committee on Graduate Studies.

 iv

Abstract

Surgical training has traditionally followed an apprenticeship model: residents observe

a number of procedures, then begin practicing in the operating room. And every time

a resident practices his first procedure on a patient, that patient is put at some level of

additional risk. Even in specialties where cadaver training is applicable (a restricted

set to begin with), cadavers are expensive, are available only in limited number, and

lack the physiology that guides surgical decision-making. Thus the effectiveness of

cadavers in preparing residents for surgical practice is limited.

Fortunately, computer-based simulation offers an intermediate between

observation and live-patient operation. Virtual environments can allow residents to

practice both basic skills and procedural logic at extremely low cost, allowing the

presentation of a wide variety of operating-room scenarios that cannot be duplicated in

cadaver labs. Furthermore, computer-based simulation can offer even experienced

surgeons a chance to practice infrequently-performed procedures, to learn new

surgical techniques, and to rehearse procedures preoperatively on patient-specific

anatomy. An analogy can be made to the highly successful field of flight simulation,

which has been routinely used to train and re-educate pilots for decades.

However, significant technical challenges stand between today‘s surgical

simulation systems and the virtual operating room that will become a standard part of

tomorrow‘s medical training. Simulators are still limited in rendering quality,

immersiveness, intuitiveness, and simulation realism. This thesis addresses some of

those challenges, specifically in the context of simulating procedures performed on the

temporal bone and mandible.

 v

We present an overview of our simulation environment, specifically focusing

on how this software delivers the sources of intraoperative feedback that are relevant

to training surgical skills. We then discuss a project inspired by this environment,

which asks whether haptic feedback can be used to teach motor skills, adding a level

of training not available in traditional training labs. We then address one of the most

difficult problems in surgical simulation: effectively simulating realistic deformable

materials. Specifically, we address the adjustment of an interactive, low-

computational-cost deformation model to behave like a more complex model. We

then present a series of algorithms and data structures that emerged from this work,

and conclude with a discussion on the evaluation of the realism of haptic rendering

systems.

The design and implementation of our simulator has proceeded in close

collaboration with surgeons, and we have designed each component to fill a niche that

was found to be relevant in building a practical surgical simulator. This dissertation

demonstrates the effectiveness of this collaborative, multidisciplinary approach to the

design of medical simulators.

 vi

Acknowledgments

Thanks go out to my advisor, Ken Salisbury, for allowing me the freedom to pursue

my own directions on this project throughout my time at Stanford. I also thank the

rest of the BioRobotics lab, especially Chris Sewell and Nik Blevins, my primary

collaborators on the simulation project. And a particularly deep thank-you to Federico

Barbagli, for his constant guidance, numerous lattés, and ideas ranging from practical

to way-out-there. Other close collaborators I would like to acknowledge include Hong

Tan, Sabine Girod, Emanuele Ruffaldi, Tim Chang, Doug Wilson, Derek Gaw, Dinesh

Pai, and Tim Edmunds.

 Thanks also to CyberKinetics and the Brown University Department of

Neuroscience, for giving me a home away from home (in an intellectual sense) and a

concrete tie to the other end of translational research.

 Funding for this work was provided by the National Defense Science and

Engineering Graduate Fellowship, and later by the AO Foundation and NIH grant

LM07295. I appreciate the generosity of all of these sources.

Thanks to the Robotics Lab support staff (Hoa in particular); it does not pass

unnoticed that the lab would collapse without you.

 Thanks of course to gLab, my home away from home (in a hanging-out sense).

I‘d especially like to thank the Cookie Office (a special thanks to the cookies

themselves) and the gSlackers (Dave Akers, Mike Cammarano, Billy Chen, Jim

Chow, Kayvon Fatahalian, Gaurav Garg, Daniel Horn, Mike Houston, Neel Joshi, Jeff

Klingner, Ren Ng, Doantam Phan, Augusto Roman, Bennett Wilburn, and Ron Yeh).

 vii

 I‘d like to thank my family, who supported my last-minute change of career

direction right after I finished applying to medical school (which I don‘t doubt now

would have been a disaster).

Also thanks to everyone who gave me so many constructive distractions

outside of work that I almost don‘t want to write this thesis and move away: Careless

Hearts, The Sound Effect, Sachin Premasuthan, cs-ultimate, im-hoops, soccerforfun,

various CS IM teams (go CS!), the California weather, etc.

Finally, a pow(“thank you”,DBL_MAX) to my girlfriendfiancéewife, best

friend, roommate, and co-dog-sitter Merrie. Grad school is a whole lot more fun when

you have someone to go through it with, and fun aside, it‘s fairly clear to everyone

who knows us that I would never be graduating without you.

 viii

Contents

Abstract.. iv

Acknowledgments .. vi

1 Introduction ... 1

1.1 Contributions ... 6

1.2 Dissertation Roadmap .. 7

2 Related Work ... 9

2.1 Haptics for Virtual Surgery .. 9

2.2 Related Simulation Environments .. 11

2.3 Evaluating Simulation Environments ... 12

2.4 Physical Simulation for Virtual Surgery ... 13

3 Visuohaptic Simulation of Bone Surgery .. 15

3.1 Introduction ... 16

3.1.1 Temporal Bone Surgery ... 17

3.1.2 Mandibular Surgery ... 18

3.1.3 Current Training Techniques .. 19

3.1.4 Previous Work ... 19

3.2 Simulation and rendering ... 20

3.2.1 Data Sources and Preprocessing ... 20

3.2.2 Hybrid Data Structure Generation .. 20

3.2.3 Haptic Rendering ... 22

3.2.3.4 Gross Feedback: Volume Sampling 22

3.2.3.5 Nonlinear magnitude computation 24

3.2.3.6 Modeling Drill Surface Non-uniformity 25

 ix

3.2.3.7 Modeling Tangential Forces 27

3.2.3.8 Modeling Drill Vibration using Recorded Data 28

3.2.4 Data Manipulation ... 29

3.2.5 Additional Tools .. 30

3.2.6 Discontinuity Detection ... 32

3.2.7 Graphic Rendering ... 33

3.2.8 Bone Dust Simulation .. 34

3.2.9 Data-Driven Sound Synthesis .. 35

3.3 Results: Construct Validity .. 37

3.3.1 Experimental Procedure ... 37

3.4 Novel Training Techniques ... 39

3.4.1 Haptic Tutoring ... 39

3.4.2 Neurophysiology Console Simulation 40

3.5 Automated Evaluation and Feedback ... 41

3.5.1 Visibility Testing ... 42

3.5.2 Learning Safe Forces ... 44

3.5.3 Learning Correct Bone Regions for Removal 46

3.6 Conclusion and Future Work ... 47

4 Haptic Training Enhances Force Skill Learning 49

4.1 Introduction... 50

4.2 Methods .. 52

4.2.1 Participants .. 52

4.2.2 Apparatus .. 52

4.2.3 Stimuli ... 53

4.2.4 Experimental Conditions ... 54

4.2.5 Experimental Procedure ... 56

4.3 Data Analysis .. 57

4.4 Results .. 60

4.5 Discussion and conclusion... 61

4.6 Software availability ... 63

 x

5. Automatic Preparation, Calibration, and Simulation of Deformable

Objects .. 64

5.1 Introduction and Related Work .. 65

5.1.1 Background .. 65

5.1.2 Related Work: Mesh generation ... 67

5.1.3 Related Work: Deformation Calibration 67

5.1.4 Related Work: Mesh Skinning .. 68

5.2 Mesh Generation ... 68

5.2.1 Background .. 68

5.2.2 Mesh Generation .. 69

5.2.3 Implementation and Results ... 71

5.3 Calibration to Ground Truth Deformation .. 74

5.3.1 Background .. 74

5.3.2 Homogeneous Calibration .. 76

5.3.3 Implementation .. 79

5.3.4 Results: Homogeneous Calibration ... 80

5.3.5 Nonhomogeneous Calibration .. 84

5.3.6 Results: Nonhomogeneous Calibration 88

5.4 Rendering and Simulation .. 91

5.4.1 Simulation .. 91

5.4.1.1 Distance Preservation ... 91

5.4.1.2 Area Preservation ... 92

5.4.1.3 Volume Preservation .. 94

5.4.2 Mesh Skinning ... 95

5.4.3 Implementation and Results ... 100

5.5 Conclusion and Future Work ... 100

5.5.1 Future Work: Mesh Generation .. 100

5.5.2 Future Work: Calibration ... 101

5.5.3 Future Work: Parallelization... 102

5.5.4 Supplemental Material ... 102

 xi

6. Algorithms and Data Structures for Haptic Rendering: Curve

Constraints, Distance Maps, and Data Logging .. 103

6.1 Introduction... 104

6.2 Haptic Curve Constraints .. 105

6.2.1 Background ... 105

6.2.2 Discretized Curve Constraints .. 105

6.2.3 Implementation and Results ... 111

6.3 Distance Map Generation .. 114

6.3.1 Terminology .. 114

6.3.2 Background ... 115

6.3.3 Distance Map Generation .. 115

6.3.4 Implementation and Results ... 121

6.3.4.1 Overall Performance ... 123

6.3.4.2 Spatial Coherence ... 125

6.3.4.3 Depth- vs. Breadth-First Search 126

6.3.5 Implementation Availability .. 128

6.4 Haptic Data Logging ... 129

6.4.1 Background ... 129

6.4.2 Data Structure .. 131

6.4.3 Implementation and Results ... 133

7 Standardized Evaluation of Haptic Rendering Systems 134

7.1 Introduction and Related Work .. 136

7.2 Data Acquisition ... 138

7.3 Data Processing ... 142

7.3.1 Data pre-processing ... 143

7.3.2 Trajectory processing ... 146

7.3.3 Metric extraction ... 146

7.4 Experiments and Results ... 147

7.4.1 Proxy-based vs. voxel-based rendering 149

7.4.2 Friction identification and evaluation 150

 xii

7.4.3 Impact of mesh resolution .. 150

7.4.4 Impact of force shading .. 152

7.5 Discussion ... 153

7.6 Future Work .. 155

7.7 Data repository .. 156

8 Conclusion and Future Work.. 157

8.1 Summary ... 157

8.2 Lessons Learned .. 158

8.2.1 The Role of Surgeons in Simulator Development 158

8.2.2 Observations on User Interfaces for Virtual Surgery . 160

8.3 Future Work .. 162

8.3.1 Integration into the Bone Surgery Simulator 162

8.3.2 New Directions .. 163

8.3.2.1 Patient-specific Simulation 163

8.3.2.2 Curriculum Development .. 164

8.3.3.3 Automated Evaluation .. 165

8.3.3.4 Non-Traditional Applications 165

References ... 167

 xiii

List of Tables

Table 1. Training paradigms promoting most and least recall for each subject. 61

Table 2. Tetrahedralization time at various output mesh resolutions. 73

Table 3. A comparison of flood-filling and distance-computation times. 124

Table 4. Accuracy and cost of rendering using proxy- and voxel-based schemes. .. 149

Table 5. Rendering accuracy with and without simulated dynamic friction. 150

Table 6. Rendering accuracy of the proxy at various mesh resolutions. 151

 xiv

List of Figures

Figure 1. A surgeon demonstrates drilling technique to a trainee using 1

Figure 2. Illustration of the location of the temporal bone and mandible. 6

Figure 3. A typical surgical drill with an assortment of drilling burrs. 18

Figure 4. The structures binding our volumetric and surface rendering data. 22

Figure 5. Contrasting approaches to haptic rendering of drill/bone interaction. 23

Figure 6. Multi-gain mapping from penetration volume to feedback magnitude. 25

Figure 7. The computation of the ―latitude‖ of a volume sample point. 26

Figure 8. A spinning, burred drill creates a tangential force. 27

Figure 9. A spectral representation of drill vibration.. 29

Figure 10. The use of the cut-plane tool. ... 31

Figure 11. The modeling and attachment of rigid bone plates. 32

Figure 12. Discontinuity detection by flood-filling. ... 33

Figure 13. Bone dust simulation. ... 35

Figure 14. A spectral representation of drill audio data.. 36

Figure 15. Still images presented to experimental participants................................... 38

Figure 16. Mean scores for simulated mastoidectomies. .. 39

Figure 17. Virtual neurophysiology monitoring. .. 41

Figure 18. Visualization of removed voxel visibility. .. 43

Figure 19. Relationship between expert-assigned scores and visibility. 44

Figure 20. Forces applied by experts and novices in the vicinity of the chorda. 45

Figure 21. Expert-assigned scores and estimate of drilled region correctness............. 47

Figure 22. A typical spatial trajectory used in our experiment. 53

Figure 23. A typical force pattern used in our experiment. .. 54

 xv

Figure 24. Visual representations of the spatial trajectory and normal force. 55

Figure 25. Illustration of the need for non-affine trajectory alignment....................... 58

Figure 26. The alignment computed by dynamic programming for a single trial. 59

Figure 27. The target and applied forces for a single trial. ... 60

Figure 28. Mean recall error (in relative units) for each training paradigm. 61

Figure 29. Stages of the mesh generation process. .. 70

Figure 30. Splitting a cube (voxel) into five tetrahedra. .. 71

Figure 31. Meshes used for evaluating mesh generation.. ... 72

Figure 32. Mesh generation times at various output mesh resolutions. 74

Figure 33. Mesh generation times at various output mesh resolutions. 74

Figure 34. The deformation problem analyzed in Section 3.4.................................... 81

Figure 35. Results after calibration for the problem shown in Figure 34 81

Figure 36. Optimization trajectory for the calibration shown in Figure 35. 82

Figure 37. Calibration verification problem. ... 83

Figure 38. Calibration verification results.. ... 84

Figure 39. Decoupled simulation and optimization meshes. 86

Figure 40. Improvement in self-calibration due to nonhomgeneous calibration. 88

Figure 41. Results following a nonhomogeneous calibration. 90

Figure 42. Geometric representations of energy derivatives. 92

Figure 43. Skinning a rendering mesh on a simulation mesh. 96

Figure 44. Vertex-space coordinate frame definition. .. 98

Figure 45. The device should be constrained between vertices 1 and 2. 107

Figure 46. The device should still be constrained to segment [1,2]. 110

Figure 47. Correspondences between device position and constraint position. 112

Figure 48. Increase in computation time with increasing trajectory size. 113

Figure 49. Increase in computation time with increasing N. 114

Figure 50. Distance transformation for point Pi.. ... 116

Figure 51. Meshes used for evaluating distance map computation. 122

Figure 52. The meshes displayed in Figure 51 after voxelization. 123

Figure 53. Performance of our distance-map computation approach. 124

 xvi

Figure 54. Performance benefit of exploiting spatial coherence. 126

Figure 55. Comparison of depth- and breadth-first search. 127

Figure 56. Comparison of depth- and breadth-first search. 128

Figure 57. Haptic applications that require only limited force-realism. 134

Figure 58. The sensor used to acquire force and torque information. 140

Figure 59. Data collected from our scanning apparatus.. ... 141

Figure 60. Overview of our data processing and algorithm evaluation pipeline. 143

Figure 61. An ―out-trajectory‖ represents and an ―in-trajectory‖. 144

Figure 62. Computation of an in-trajectory point. ... 145

Figure 63. The model and scanned trajectory used in Section 7.4. 148

Figure 64. Impact of mesh size and force shading on RMS error. 152

Figure 65. Failure case for the proxy algorithm. ... 155

Figure 66. Components of our surgical workstation... 160

1

1 Introduction

Figure 1. A surgeon demonstrates drilling technique to a trainee using

our networked simulation environment.

This dissertation will present techniques for haptic rendering and physical simulation,

specifically targeted toward solving problems relevant to virtual surgery. We will

begin by exploring five problems faced by the surgical community and possible

simulation-based solutions to those problems, to motivate the remainder of the thesis.

The first relevant challenge faced by the surgical community is the risk

incurred by patients when a resident first conducts a procedure. Surgical training

programs are traditionally based primarily on observation of experienced surgeons.

Residents are provided with some classroom training, but the core of a resident

training program is time spent observing and assisting in the OR. In certain

 2

specialties, residents also practice on cadavers or animals, but these approaches

virtually never supplant patient-centric learning due to cost and inherent dissimilarity

from the procedures being trained: cadavers lack physiology, and animals are in most

cases sufficiently different from humans in anatomy, physiology, and pathology to

prevent fine-tuning of surgical skills. The primary drawback to this model for surgical

training is the intrinsic risk at which patients are placed when a resident first practices

a procedure on a live patient. Despite extensive preparation through textbooks and

observation, sensorimotor skills take time to develop, and a first-time surgeon is

unlikely to be as effective as an experienced superior.

A second problem facing surgical training is that most resident training

programs currently lack a formal mechanism for evaluating resident progress. It is

generally up to the discretion of instructors to determine when residents are prepared

for various stages of intraoperative participation, a subjective system which is difficult

to standardize across institutional or national boundaries.

 A third challenge faced by the surgical community is the lack of a consistent

mechanism for incorporating new technologies into surgical practice. Surgery is

already being transformed by computer-based techniques such as robotic surgery

([62], [102], [139], [93], [120], [122], [35]) and image-guided/augmented-reality

([108], [106], [141], [57]) surgery. However, integration of new techniques and

devices is still based largely on proprietary materials created by medical device

manufacturers, which can be difficult to evaluate and difficult to disseminate.

Furthermore, even experienced surgeons face the problem of learning to use new

technologies, and the community as a whole faces the problem of rapidly developing

surgical techniques, outcome metrics, and training guidelines for new devices and

treatments.

 A fourth challenge faced by the surgical community is the lack of a mechanism

for ―refreshing‖ surgeons – even experienced surgeons – on rarely-performed

procedures, approaches, pathologies, or adverse intraoperative events. Although

surgeons in the U.S. are required to participate in continuing medical education on an

annual basis, this generally focuses on new techniques and does not include hands-on

 3

review of uncommon procedures. This is especially relevant for ER and general

surgeons, who see a wide variety of cases and often have little time to prepare for a

case. To make the analogy to the highly-successful field of flight simulation, a pilot

can fly a 747 for twenty years and never experience an engine failure, but still must be

prepared to respond when one occurs.

 And yet a fifth challenge faced by surgeons is the tremendous anatomic and

physiological variation among patients, requiring significant adjustment and

navigational decision-making intraoperatively. 3D imaging offers surgeons a

preoperative view of a particular patient‘s anatomy, but 3D imaging is still used only

sparsely in preoperative preparation (surgeons still primarily rely on 2D slices from

3D data sets). This is largely due to the inability of current 3D image viewers to

replicate the approaches, perspectives, and interactions surgeons experience

intraoperatively. In this sense, 3D viewers do not offer significantly more than the

basic structural information surgeons currently obtain from 2D slice images.

Furthermore, even an ideal image viewer would not allow surgeons to practice the

difficult physical manipulations that may be required for a particular patient.

 We have now seen five challenges faced by today‘s surgical community: risk

posed by training inexperienced surgeons, evaluating resident progress, incorporating

new technologies, re-training experienced surgeons, and a lack of patient-specific

rehearsal techniques. Surgical simulation (a term we will use interchangeably with

―virtual surgery‖) – particularly haptic surgical simulation – offers promising

solutions to each of these problems.

Haptic virtual environments will allow residents to train on numerous complete

procedures before ever entering an operating room, providing a strong command of

the necessary sensorimotor skills and strong preparation for adverse events.

Computer-based simulation can offer reliable, repeatable, automated mechanisms for

evaluating resident progress, which can easily be standardized across institutions.

New surgical devices and approaches will be incorporated into simulation

environments before being incorporated into regular clinical use, allowing surgeons a

 4

chance to learn and experiment, and to provide feedback to manufacturers to

iteratively improve devices before high-risk clinical testing even begins. Surgeons

will be able to rehearse rarely-performed procedures either regularly (as part of

continuing medical education requirements) or as needed (immediately before

performing an unfamiliar procedure). And finally, surgeons will be able to rehearse a

procedure on a specific patient‘s anatomy, pathology, and even physiology in

simulation before seeing that patient in the OR; this will help optimize surgical plans

and minimize unexpected intraoperative events. This type of rehearsal environment is

unlikely to replicate a complete (and lengthy) procedure; the most effective rehearsal

will likely sit somewhere between complete simulation and interactive visualization.

 And perhaps the most valuable – and most overlooked – possibilities offered

by virtual surgery are those provided to personnel other than trained surgeons. For

example, virtual surgery offers tremendous possibilities to veterinary surgeons, who

occasionally have to operate on species they have not previously encountered, where

acquiring a complete knowledge of the relevant anatomy and physiology may not be

possible in the available time.

As another example, in times of crisis, it may become necessary for non-

surgeons – e.g. non-surgical physicians, nurses and PA‘s, battlefield personnel, etc. –

to perform surgery, and simulation offers a rapid and highly focused training

mechanism.

Virtual surgery can also offer medical students an opportunity to explore

different surgical disciplines before committing to a specialty, to evaluate their interest

and the appropriateness of their skill set or to demonstrate their proficiency to

residency programs.

And finally, virtual surgery – though perhaps not in its most realistic form –

may be an appropriate mechanism for a patient to better inform himself about a

procedure for which he is preparing or a procedure he has recently undergone. Most

patients – even technologically informed patients – experience surgery with only a

limited amount of understanding about the procedural details. While some patients

 5

may be content with this level of information, many patients (or their families) would

benefit from a deeper understanding of a procedure that may come from a video-

game-like simulation environment.

Despite the numerous motivations provided above for incorporating surgical

simulation into standard medical practice, and despite the commercial availability of

several simulators (e.g. [182], [36], [87], [183], [191], [213]), many of which have

undergone successful validation studies (e.g. [53], [215], [161], [146], [207], [12]),

virtual surgery has yet to become a part of the medical mainstream.

This is due in large part to the limited realism of simulation environments,

which often restricts successful simulation-based learning to basic skills training that

does not depend on graphical realism or even a medical context for the virtual

environment. Training for basic sensorimotor skills in laparoscopy, abstracted away

from whole-procedure simulation, has thus been particularly successful [215].

In order for surgical simulation to develop into a core component of medical

practice and offer the full complement of benefits outlined above, further basic

research is required in the areas of graphic and haptic rendering techniques,

assessment mechanisms for rendering accuracy and simulator validity, automated

evaluation mechanisms, computer-assisted pedagogy, user interface design for

surgical simulators, image processing for data preparation, etc.

This thesis addresses several of these issues in the context of developing a

simulation environment for surgical procedures of the temporal bone (Figure 2) and

mandible. The design of this environment proceeded in close collaboration with

surgeons, and the sections of this thesis address individual problems or opportunities

that arose during this development process.

 6

Figure 2. Lifelike and anatomically-accurate illustration of the location of the temporal

bone (red) and mandible (green).

1.1 Contributions

This dissertation presents the details of our surgical simulation environment, and a

series of technical advances that were made in the process of developing this

environment. The key contributions of this thesis are:

Algorithms and rendering techniques for haptic surgical simulation: We present

the haptic rendering techniques used in our surgical simulator (Section 3), which are

applicable to a variety of surgical specialties and non-medical haptic applications. We

also present a series of algorithms and data structures that are used in processing and

preparing the data used in our simulator (Sections 5 and 6), presented in a general

context that is not restricted to their application to virtual surgery. Additionally, we

present mechanisms for comparing force trajectories (Section 4) and haptic rendering

algorithms (Section 7) that will enable a variety of haptics and psychophysical

experiments. The common threads among the presented techniques are (a) replicating

and assessing the sensory feedback required for effective surgical training and (b)

data-driven methods for simulation and haptic rendering.

Experiments and experimental results: We present two experiments involving

human subjects. The first (Section 3) demonstrates the construct validity of our

simulation environment and will serve as a template for future construct validity

experiments. The second (Section 4) demonstrates the utility of haptic feedback in

teaching force patterns, and introduces novel analysis techniques that will generalize

to other learning and psychophysics experiments. We further present computational

experiments evaluating algorithmic performance and accuracy in Section 5, Section 6,

and Section 7.

Software: The work presented in this thesis has generated a body of software that will

contribute to the haptics and medical simulation communities. The simulation

 7

environment presented in Section 3 is currently in use in the Department of Head and

Neck Surgery at Stanford and will continue to be a testbed for surgical simulation

experiments. The software packages, code, and/or data presented in each of the other

sections are available online; links are provided as each software component is

discussed.

1.2 Dissertation Roadmap

The remainder of this dissertation is organized as follows:

In Section 2, we discuss related literature, including work on virtual surgery, haptic

rendering, and physical simulation.

Section 3 describes our surgical simulation environment in detail, with a particular

emphasis on haptic rendering techniques and the replication of relevant sources of

intraoperative feedback.

Section 4 presents an experiment conducted to evaluate the possibility of teaching

sequences of forces using haptic feedback. This section discusses experimental

design, analysis techniques, and experimental results. Results indicate that haptic

feedback can enhance learning when coupled with visual feedback.

Section 5 presents techniques for mesh generation, calibration to a finite element

reference model, and interactive simulation. These techniques are presented in the

context of a processing pipeline for preparing and interactively simulating deformable

objects.

Section 6 presents three algorithms and data structures that contributed to the work

presented in Section 3, Section 4, and Section 5. In particular, this section discusses

 8

techniques for distance field generation, data logging for performance-sensitive

multithreaded applications, and haptic curve constraints.

Section 7 presents techniques for evaluating the realism of haptic rendering

algorithms; forces generates by a haptic rendering system are compared with ground

truth data.

Section 8 concludes with lessons learned from our experiments in surgical simulation

and discusses future work in some of the areas discussed throughout the thesis.

 9

2 Related Work

This section provides an overview of related literature, particularly focusing on

projects related to virtual surgery. More detailed discussions of related work are

included in each subsequent section, placed specifically in the context of the work

presented in that section.

2.1 Haptics for Virtual Surgery

Before embarking on the development of a haptic simulation environment, it is

relevant to ask whether haptic feedback is relevant to surgery at all. Recent studies

have begun to explore this question in physical models of surgical environments.

Wagner et al [206] asked subjects to dissect a physical model of an artery with and

without force feedback, and found that force feedback significantly reduced the

number of errors and the overall level of applied force. Tholey et al ([200], [85])

asked subjects to perform a soft-tissue identification task in a physical model, and

found that haptic feedback significantly enhanced subjects‘ ability to distinguish

among tissue types. Kazi ([94]) found that force feedback reduces applied forces in a

catheter insertion task. These results confirm the intuition that haptic feedback is

critical to the fine dexterous manipulation required for surgery. The recent adoption

of robotic platforms – which currently lack force feedback – will offer a future testing

ground for the role of haptics as force-feedback capabilities are added to surgical

robots.

 10

 The apparent utility of haptics in surgery suggests that effective surgical

simulators will also include haptic feedback. Thus numerous surgical simulation

environments have included haptics. Laparoscopic surgery has been a particularly

appealing target for simulation-based learning, given the difficult learning curve for

laparoscopic instruments and the reproducibility of the intraoperative field of view;

environments for training laparoscopic skills constitute the bulk of simulators

developed to date. Webster et al [209] present a haptic simulation environment for

laparoscopic cholecystectomy, and Montgomery et al [124] present a simulation

environment for laparoscopic hysteroscopy; both projects focus on haptic interaction

with deformable tissue. Cotin et al [43] present a haptic simulator for interventional

cardiology procedures, incorporating blood flow models and models of

cardiopulmonary physiology. De et al [49] apply the method of finite spheres to a

haptic simulator for laparoscopic GI surgery.

 Several commercial simulators also include haptic feedback. For many of

these products, initial validation studies have been performed to evaluate the efficacy

of haptic simulation as a training technique. Wong et al [212] evaluated the construct

validity of the Endovascular AccuTouch system (Immersion Medical) for pacemaker

implantation simulation; this study differentiated participants according to their

surgical experience level (similar in scope to the study presented in Section 3 of this

dissertation). Engum et al [54] explored the training benefits of the CathSim

simulator for intravenous catheterization, and found similar skill demonstration in

participants trained using traditional methods and those using the simulator; in several

methodological aspects of the task (e.g. documentation), the non-simulator group was

found to be superior. Grantcharov et al [68] confirmed the construct validity (ability

to differentiate users according to experience level) of the GI Mentor II system

(Simbionix Ltd.), a haptic simulator for GI endoscopy. Similarly, McDougall et al

[114] confirmed that construct validity of the LAPMentor system (Simbionix Ltd.), a

haptic trainer for basic laparoscopic skills.

 11

2.2 Related Simulation Environments

This dissertation focuses on our environment for simulating bone surgery, so we will

elaborate specifically on simulation work in this area.

 Several groups have developed simulators for temporal bone surgery, though

none have previously demonstrated construct validity and none have been formally

incorporated into surgical training programs. Bryan et al [34] present a visuohaptic

environment for simulating temporal bone surgery, and the developers of this project

are currently assembling a multi-institution study to validate and disseminate their

work [84].

 Agus, Prelstaff, Giachetti et al present a series of papers describing their

simulation environment for virtual temporal bone surgery ([9], [8], [10], [7], [6]).

They provide further detail on their particle model for simulating bone dust [63], their

approach to haptic rendering [5], and their approach to volume rendering [11]. They

present a related series of psychophysical experiments on haptic contrast sensitivity

and users‘ abilities to differentiate bone tissue types in their simulator in [30]. Also,

the same group presents an experimental approach to tuning the haptic feedback in

their environment [4].

Pflesser, Petersik et al report on an environment for virtual temporal bone

surgery ([152], [151], [153], [155]), focusing on haptic rendering and their adaptation

of the Voxel-Point-Shell method [116] to bone surgery.

 Previous work on simulating craniofacial surgery has focused largely on soft-

tissue modeling for predicting post-operative facial appearance. The general paradigm

is to acquire a pre-operative model of a patient‘s soft tissue via image segmentation or

range scans, and couple that to a pre-operative model of the same patient‘s bone

structure acquired via MR or CT. The bone model is then manipulated interactively

by a surgeon, and the system attempts to use soft-tissue deformation simulation (not

generally in real time) to predict facial tissue movement and post-operative

appearance. Keeve et al [96] introduce this approach using laser range scans and use

 12

the finite element method to compute deformation; a similar FEM-based approach is

used by Berti et al [21]. Teschner et al ([198], [196], [197]) also use range scans as

preoperative data, and use an optimization approach to model deformation via a mass-

spring system.

 Several previous projects have also been targeted at developing an interactive

environment for manipulating bone fragments. Berti et al [21] allow the user to

explicitly specify polygonal cut surfaces and provide visualization tools to assist in

visualizing those cuts. Everett et al [56] provide interactive collision detection during

the manipulation of bone fragments, and incorporate cephalometric labeling into their

environment. Pintilie et al [157] focus on resampling, refining, and re-meshing a

surface mesh to implement a cutting operation using a scalpel-like tool on the surface

of a bone model.

2.3 Evaluating Simulation Environments

As surgical simulation environments mature and enter the medical mainstream, formal

evaluation and validation will become critical aspects of simulator development,

clinical approval, and marketing. Thus Section 3 of this thesis evaluates the construct

validity of our simulation environment. Here we will review the recent trend in the

simulation community toward evaluation studies. Several such studies – focusing on

commercial simulation environments that include haptics – were also discussed above

in Section 2.1.

 Additionally, Youngblood et al [215] compared computer-simulation-based

training to traditional ―box‖ (mechanical simulator) training for basic laparoscopic

skills, and found that trainees who trained on the computer-based simulator performed

better on subsequent porcine surgery. Hariri et al [75] evaluated a simulation

environment not for its ability to teach surgical skills, but for its ability to teach

shoulder anatomy, and found it to be superior to textbook-based training. Srivastava

et al [185] confirmed the construct validity of a simulator for arthroscopic procedures,

and Van Sickle et al [204] confirmed the construct validity of the ProMIS simulator

for basic laparoscopic skills. Seymour et al [180] and Grantcharov et al [69] both

 13

evaluated the transference of laparoscopic skills for minimally-invasive

cholecystectomy from a simulator to a clinical OR, and found a significant benefit

from virtual training in terms of time, error rates, and economy of movement. Haluck

et al [73] address the validity of the Endotower (Verefi Technologies, Inc.), a

simulator for laparoscopic endoscopy.

2.4 Physical Simulation for Virtual Surgery

The most challenging technical problem in simulating most surgical procedures is the

computation of deformation from forces. This poses the hardest case of the physical

deformation problem, requiring both realism (materials must behave like the physical

objects they‘re representing) and interactivity (deformation must be computed at rates

sufficient for graphic – and in some cases haptic – rendering). This dissertation

addresses this problem in Section 5, using optimization techniques to extract

maximally realistic behavior from interactive simulation techniques.

A significant amount of work has been done on physical simulation of

deformable materials for computer graphics, but these problems are rarely subject to

interactivity constraints and can generally be manually calibrated to express a range of

desired material properties. Gibson and Mirtich [64] provide a comprehensive review

of the fundamental techniques in this field; this section will specifically discuss the

application of physical simulation techniques to interactive deformation for virtual

surgery.

Early simulation environments (e.g. [123], [33]) generally employed the

network of masses and springs to model deformation. This approach is extremely fast,

has extensively-studied stability properties, parallelizes extremely well, handles

topology changes trivially, and is intuitive to code and extend. Unfortunately, mass-

spring systems are not calibrated in terms of intuitive physical parameters, do not

generally provide volume-preserving properties, are subject to instabilities when

integrated explicitly, and do not generally provide physically-accurate behavior. Later

work coupled traditional mass-spring systems with implicit solvers to improve

stability and accuracy ([210], [209]).

 14

More recent medical simulation environments have incorporated finite-element

modeling, which provides significantly more accuracy than mass-spring systems at the

expense of computational cost. Such systems generally incur a particularly high cost

for topology changes; thus much of the work in this area has focused on building

interactive finite element simulations that efficiently handle topology changes ([142],

[105], [20], [121]).

Additionally, a number of novel deformation models have been developed

specifically for medical simulation. Balaniuk and Salisbury present the Long

Elements Method [15] and the Radial Elements Method [16]; both are constitutive,

quasi-static methods that provide volume preservation but limit dynamic behavior.

Cotin et al [44] use the finite element method as a preprocessing step and use a

simpler elastic model to adjust precomputed force/response functions to interactive

stimuli. More recently, the increasing availability of parallel architectures has spurred

the development of simulation techniques that parallelize more naturally, including

meshless techniques ([49], [50]) and parallel mass-spring systems ([133], [134]).

Although there has yet to be a consensus on a ―correct‖ deformation model for

medical simulation, effective application of any model will require accurate

descriptions of the tissues represented in the simulation. Furthermore, a thorough

evaluation of a deformation model requires ground truth data to which one can

compare results obtained in simulation. For both of these reasons, a significant body

of work has attempted to obtain material properties for physical tissues. Kerdok et al

[97] collect strains throughout a deformable body, aiming to establish a standard to

measure soft-tissue deformation models. Samani et al [168] measure the ex vivo

response of tissue samples to applied forces. Tay et al [194] and Brouwer et al [32]

perform similar measurements in vivo.

 15

3 Visuohaptic Simulation of Bone Surgery

This section details the simulation environment we have developed for simulating

bone surgery. We present relevant simulation techniques and describe the architecture

that motivates the remainder of the thesis. A particular emphasis is placed on

providing the sensory cues that are relevant to surgical training in these disciplines.

That is, rather than striving primarily for an aesthetic sense of graphical realism, we

examine the key skills that an ideal simulator would train, and the key sources of

feedback that are relevant to surgical decision-making. We then provide appropriate

representations of those elements in our environment. These critical aspects of the

simulation environment have been identified through iterative design and prototyping

in close collaboration with surgeons at Stanford.

 This work has not yet been validated in a clinical setting; a clinical trial is

beyond the scope of this thesis. However, the surgical simulation community defines

several levels of preclinical validity, and we present an experiment here that assesses

the construct validity of our environment. We demonstrate with statistical

significance that surgeons perform better in our environment than non-surgeons

(Section 3.3).

 At the time of publication of this thesis, the environment described here has

been installed in the resident training facility in the Department of Head and Neck

Surgery at Stanford, and is being used regularly by surgeons to iteratively improve the

environment. Our goal is to integrate it into the resident training program in the

coming months.

 16

 Work described in this section has been published in [128], [126], and [127].

The environment presented here was also used as the infrastructure for the work

presented in [179], [178], [177], and [176].

We present techniques for the visual and haptic simulation of bone surgery, with a

specific focus on procedures involving the temporal bone and the mandible. We

discuss our approaches to graphic and haptic rendering and interactive modification of

volumetric data, specifically focusing on generating force-feedback effects that are

relevant to bone drilling. We then discuss how our rendering primitives and

simulation architecture can be used to build surgical training techniques that are not

available in traditional cadaver-based training labs, offering new possibilities for

surgical education. In particular, we discuss the automatic computation of

performance metrics that can provide real-time feedback about a trainee‘s

performance in our simulator. We also present results from an experimental study

evaluating the construct validity of our simulation and the validity of our performance

metrics.

3.1 Introduction

Surgical training has traditionally revolved around an apprenticeship model: residents

observe experienced surgeons in the operating room, and eventually are deemed ready

to perform their first procedure [67]. In recent years, simulation-based training has

emerged as a potential adjunct to this method, and the value of simulation-based

learning has been more widely accepted [74]. Simulation can be a safe, cost-effective,

customizable, and easily-accessible tool for gaining experience in surgery.

This section will present methods for simulating surgeries involving bone

manipulation, with a specific focus on two categories of procedures: temporal bone

 17

surgery and mandibular surgery. Section 3.1 will provide relevant clinical background

on the target procedures. Section 3.2 will describe the algorithms and data structures

used for interactive haptic and graphic rendering, specifically targeted toward

providing key sources of intraoperative feedback for surgical interaction with bones.

Section 3.3 will present the results of a study which evaluates the construct validity of

our system (its ability to discriminate expert surgeons from novices). Section 3.4 will

describe features of our simulation environment that do not exist in traditional,

cadaver-based training labs. Section 3.5 will discuss our approach to automatically

evaluating a trainee‘s performance in our environment.

We begin with a brief description of the relevant surgical procedures.

3.1.1 Temporal Bone Surgery

Several common otologic surgical procedures – including mastoidectomy, acoustic

neuroma resection, and cochlear implantation – involve drilling within the temporal

bone to access critical anatomy within the middle ear, inner ear, and skull base. As

computer simulation is becoming a more frequently used technique in surgical training

and planning, this class of procedures has emerged as a strong candidate for

simulation-based learning.

The time spent on a procedure in this area is typically dominated by bone

removal, which is performed with a series of burrs (rotary drill heads) of varying sizes

and surface properties (Figure 3). Larger burrs are generally used for gross bone

removal in the early part of a procedure, while smaller burrs are used for finer work in

the vicinity of target anatomy. Surgeons employ a variety of strokes and contact

techniques to precisely control bone removal while minimizing the risk of vibration

and uncontrolled drill motion that could jeopardize critical structures.

 18

Figure 3. A typical surgical drill with an assortment of drilling burrs.

3.1.2 Mandibular Surgery

Incorrect alignment of the jaws – due to congenital malformation, trauma, or disease –

can result in cosmetic deformation and problems with chewing and/or breathing.

Orthognathic surgeries correct such problems, typically by inducing a fracture in one

or both jaws (generally using a bone saw), displacing the fractured components into an

anatomically preferable configuration, and installing bone screws and/or metal plates

to fix the bone segments in their new positions.

This approach is often prohibited by the severity of the deformation, the size of

the separation that would be required after fracture, or the sensitivity of the

surrounding soft tissue. In these cases, distraction osteogenesis is often employed as

an alternative. Here a similar procedure is performed, by which only a minor

separation is created intraoperatively. Instead of spanning the gap with a rigid plate,

an adjustable distractor is fixed to the bone on both sides of the gap. The distractor

can be used to gradually widen the fracture over a period of several weeks, allowing

accommodation in the surrounding tissue and allowing the bone to heal naturally

across the fracture.

These procedures are likely to benefit from surgical simulation for several

reasons. The complex, patient-specific planning process and the significant anatomic

variation from case to case suggests that an end-to-end simulator will assist physicians

in preparing for specific cases. Furthermore, distraction procedures have been

introduced to the craniofacial surgical community only within the last ten to fifteen

years, and an effective simulator will significantly aid in the training and re-training of

 19

this new class of procedures, and with the exploration of alternative techniques for

effective surgeries.

3.1.3 Current Training Techniques

Resident training in otologic surgery typically includes dissection of preserved human

temporal bones. This allows residents to become acquainted with the mechanical

aspects of drilling, but does not incorporate physiological information, continuous

feedback for hazard avoidance, or soft tissue work. Temporal bone labs are also

costly to maintain, and cadaver specimens can be difficult to obtain in sufficient

quantity. This approach also limits the precision with which an instructor can monitor

a trainee‘s drilling performance, as the instructor cannot feel the fine details of the

trainee‘s interaction with the bone surface, and cannot easily share the drill and bone

surface for demonstration. A further limitation of cadaver-based training is that

instructors have little or no mechanism for controlling anatomic variations or the

presence of specific pathology that can lead to challenging training scenarios.

Interactive atlases such as [79] are available for training regional anatomy. Two-

dimensional simulations [26] are available for high-level procedure training.

Surgical training in craniofacial surgery typically does not include cadaver-

based procedures. Most residents learn anatomy primarily from textbooks and

models; surgical technique is learned through apprenticeship and procedure

observation.

3.1.4 Previous Work

Previous work in interactive simulation of temporal bone surgery ([7], [34], [155]) has

focused primarily on haptic rendering of volumetric data. Agus et al [7] have

developed an analytical model of bone erosion as a function of applied drilling force

and rotational velocity, which they have verified with experimental data [4]. Pflesser

et al [155] model a drilling instrument as a point cloud, and use a modified version of

the Voxmap-Pointshell algorithm [160] to sample the surface of the drill and generate

appropriate forces at each sampled point. Each of these projects has incorporated

 20

haptic feedback into volumetric simulation environments that make use of CT and MR

data and use volume-rendering techniques for graphical display.

Agus et al [7] describe several enhancements to their simulation environment

that incorporate additional skills, including the use of irrigation and suction; and

additional sources of intraoperative feedback, including real-time rendering of bone

dust.

Additional work has focused on non-interactive simulation of craniofacial

surgery for planning and outcome prediction ([95], [101], [170]). [126] discusses

preliminary work on interactive simulation of craniofacial surgery, and [65] presents a

simulation architecture for arthroscopic procedures.

3.2 Simulation and rendering

The goal of our simulation is high-fidelity presentation of the visual and haptic cues

that are present in a surgical environment. This section will discuss our overall

rendering scheme, and will focus on how we present the specific cues that are relevant

to surgical training.

3.2.1 Data Sources and Preprocessing

Models are loaded from full-head or temporal bone CT data sets, thresholded to isolate

bone regions, and resampled to produce isotropic voxels, 0.5mm on a side. Using a

standard resampled resolution allows us to calibrate our rendering approaches

independently of the image sources used for a particular simulation case.

3.2.2 Hybrid Data Structure Generation

In order to leverage previous work in haptic rendering of volumetric data [153] while

still maintaining the benefits of surface rendering in terms of hardware acceleration

and visual effects, we maintain a hybrid data structure in which volumetric data are

used for haptic rendering and traditional triangle arrays are used for graphic rendering.

In order to simplify and accelerate the process of updating our polygonal data when

the bone is modified, we build a new surface mesh – in which vertices correspond

directly to bone voxels – rather than using the original isosurface mesh.

 21

The voxel array representing the bone model is loaded into our simulation

environment, and a polygonal surface mesh is generated to enclose the voxel grid.

This is accomplished by exhaustively triangulating the voxels on the surface of the

bone region, i.e.:

for each voxel v1

if v1 is on the bone surface

 for each of v1‟s neighbors v2

 if v2 is on the bone surface

 for each of v2‟s neighbors v3

 if v3 is on the bone surface

 generate vertices representing v1,v2,v3

 generate a triangle t(v1,v2,v3)

 orient t away from the bone surface

Here being ‗on the bone surface‘ is defined as having non-zero bone density and

having at least one neighbor that has no bone density. Although this generates a

significant number of triangles (on the order of 200,000 for a typical full-head CT data

set), we use several techniques to minimize the number of triangles that are generated

and/or rendered. To avoid generating duplicate triangles, each voxel is assigned an

index before tessellation, and triangles are rejected if they do not appear in sorted

order. A second pass over the mesh uses the observations presented in [28] to

eliminate subsurface triangles that will not be visible from outside the mesh.

Voxels are stored in a compact, in-memory hash table, which is indexed by three-

dimensional grid coordinates. This allows very rapid point/volume collision-detection

without excessive memory requirements.

Secondary data structures map each voxel to its corresponding vertex index,

and each vertex index to the set of triangles that contain it. This allows rapid access to

graphic rendering elements (vertices and triangles) given a modified bone voxel,

which is critical for shading vertices based on voxel density and for re-triangulation

when voxels are removed (see Section 3.2.4). Figure 4 summarizes the relevant data

structures.

 22

Voxel array
hash table
Maps (i,j,k)
voxel pointers

Voxel
struct
Contains vertex
index and density
information.

Vertex array
openGL array
Contains vertex
positions,
normals, colors

Index map
hash table
Maps a vertex index

All containing triangles

Triangle array
openGL array
Contains vertex indices
defining each triangle

Figure 4. A summary of the structures binding our volumetric (haptic) and surface

(graphic) rendering data. When voxels are removed or modified, the corresponding

vertices and triangles can be accessed from the (i,j,k) voxel index in approximately

constant time.

3.2.3 Haptic Rendering

Virtual instruments are controlled using a SensAble Phantom [110] haptic feedback

device, which provides three-degree-of-freedom force-feedback and six-degree-of-

freedom positional input. Users can select from a variety of drills, including diamond

and cutting burrs ranging from one to seven millimeters in diameter. We will first

discuss our approach to gross force-feedback, then we will present our methods for

providing specific haptic cues that are relevant to surgical training.

3.2.3.4 Gross Feedback: Volume Sampling

We initially adopted a haptic feedback approach similar to [153], in which the drill is

represented as a cloud of sample points, distributed approximately uniformly around

the surface of a spherical burr. At each time step, each sample point is tested for

contact with bone tissue. By tracing a ray from each immersed sample point toward

the center of the tool, the system can generate a contact force that acts to move that

sample point out of the bone volume (Figure 5a).

 23

(a) (b)

Figure 5. Contrasting approaches to haptic rendering of drill/bone interaction. (a) The

ray-tracing approach. Red points are surface samples on the surface of a spherical drill.

Each sample contributes a vector to the overall force that points toward the tool center

and is proportional to the penetration of the sample. Voxels labeled in purple would be

missed by the raytracing algorithm, thus creating uneven bone removal. (b) Our volume-

sampling approach. Here, the full volume of the drill is sampled, and each point that is

found to be immersed in the bone volume contributes a vector to the overall force that

points toward the center of the tool but is of unit length.

We found that this approach worked well overall, as reported by [153], but had

several undesirable artifacts. Due to sampling effects (Figure 5a), this approach

produced uneven voxel removal at high resolutions, creating unrealistic bone removal

patterns that depended on surface sampling. Furthermore, floating-point computations

are required to find the intersection points at which rays enter and leave voxels. Since

sampling density is limited by the number of samples that can be processed in a haptic

timestep (approximately one millisecond), extensive floating-point computation limits

the potential sampling density. This sparse sampling limits the effective stiffness of

the simulation (which depends on rapid and accurate computation of penetration

volume), which disrupts the illusion of contact with a highly rigid object.

Furthermore, this sparse sampling limits the implementation of higher-level effects –

such as bone modification that is dependent on the precise sub-parts of the drill that

are used to contact the bone. These drawbacks motivate an approach that uses a

higher ratio of integer to floating-point computation and allows a higher sampling

density.

 24

We thus take a more exhaustive approach to sampling the tool for haptic

feedback and bone density reduction. The tool itself it discretized into a voxel grid

(generally at a finer resolution than the bone grid), and a preprocessing step computes

an occupancy map for the tool‘s voxel array. At each interactive timestep, each of the

volume samples in the tool is checked for intersection with the bone volume (a

constant-time, integer-based operation, using the hash table described in Section

3.2.2). A sample point that is found to lie inside a bone voxel generates a unit-length

contribution to the overall haptic force vector that tends to push this sample point

toward the tool center, which – with adequate stiffness – is always outside the bone

volume) (Figure 5b). Thus overall penetration depth is computed based on the number

of immersed sample points, rather than on the results of a per-sample ray-trace.

The overall force generated by our approach is thus oriented along a vector that

is the sum of the ―contributions‖ from individual volume sample points. The

magnitude of this force increases with the number of sample points found to be

immersed in the bone volume.

3.2.3.5 Nonlinear magnitude computation

Because the drill is densely sampled, a large number of sample points often become

immersed immediately after the drill surface penetrates the bone volume, which leads

to instability during low-force contact. Reducing the overall stiffness leads to ―softer‖

haptic feedback that does not accurately represent the stiffness of bone. We thus

employ a multi-gain approach, in which the magnitude of haptic feedback is a

nonlinear function of the number of immersed sample points.

More specifically, we define two gains, one of which is used when fewer than

a threshold number of sample points are immersed; the other is used for deeper

penetrations. This threshold is set such that the discontinuity in the force function

occurs shortly after contact is initiated, so no discontinuity is perceived by the user.

This relationship is summarized in Figure 6. We find that this approach allows large

stiffnesses during haptic interaction, while avoiding instability during the ―high-risk‖

period immediately following initial penetration.

 25

0 50 100 150 200

Number of Immersed Sample Points

N
o
rm

a
liz

e
d
 F

e
e
d
b
a
c
k

M
a
g
n
itu

d
e

Feedback Magnitude vs. Penetration Volume

Figure 6. Multi-gain mapping from penetration volume (number of immersed sample

points) to feedback magnitude.

 Our volume-sampling approach requires sampling a significantly higher

number of points than the ray-tracing approach, since the complete volume of the burr

is sampled, instead of just the surface. However, the operation performed when a tool

sample is found to lie within the bone volume is a constant-time computation, rather

than a complex ray-tracing operation. Overall, we are able to achieve a significantly

higher stiffness than they ray-tracing approach allows. We do build on the ray-tracing

approach for less time-critical tasks, including bone thickness estimation (Section

3.2.9) and haptic feedback for non-physically-based tools (Section 3.2.5).

3.2.3.6 Modeling Drill Surface Non-uniformity

Our system also associates a ―drilling power‖ with each sample point based on its

location within the drill head; each tool voxel that intersects a bone voxel removes an

amount of bone density that depends on the drilling power of the sample point. This

approach allows us to simulate key aspects of drill/bone contact, particularly the fact

that the equatorial surface of the burr carries a larger linear velocity than the polar

surface and thus removes more bone per unit of applied force. Simulating this effect

is critical for encouraging trainees to use proper drilling technique.

More precisely, the amount of bone removed per unit time by a given sample

point is computed as Rbr in the following expression:

 26

)))2/abs((,0max(

)))((abs(cos

max

1

falloffRfRbr

ctsd

…where s is the location of this sample point, tc is the location of the tool

center, d is the axis of the tool handle, and θ is thus the angle between the drill handle

and (s - tc). The expression abs(π/2 – θ) is thus the ―latitude‖ of the current sample

point. falloff is a constant parameterizing the non-uniformity of the drill surface. If

falloff is zero, the pole and the equator of the drill remove bone with equal efficiency.

Rmax is the maximum rate of bone removal per unit force, and f is the magnitude of

force currently being applied by the user. The computation of latitude is summarized

in Figure 7. Note that falloff parameters are precomputed for drill samples to avoid

performing expensive arc-cosine operations hundreds of times per haptic timestep.

Primary drill axis (d)
Tool center (tc)

Sample point (s)

(s-tc))))2/((

Figure 7. The computation of the “latitude” of a volume sample point for bone removal

rate computation.

This approach allows us to encourage proper drilling technique and to model

critical differences among burr types. For example, our model captures the fact that

cutting burrs typically show more dependence on drilling angle than diamond burrs

do, but have higher overall bone removal rates. A cutting burr would thus be

associated with both a higher Rmax and a higher falloff in the above expression.

 27

3.2.3.7 Modeling Tangential Forces

Another property of surgical drills that should be accurately represented in a

simulation environment is their tendency to drag the user along the surface of the

bone, due to the contact forces between the teeth of the drilling burr and the bone

(Figure 8). Stroking the drill on the bone surface in a direction that allows these forces

to oppose a surgeon‘s hand motion permits the surgeon to control the velocity of the

drill. Stroking the drill such that these forces complement the surgeon‘s hand motion

causes the drill to catch its teeth on the bone and rapidly ―run‖ in the direction of

movement, which can be extremely dangerous. Simulating this effect is thus critical

to training correct drilling technique.

drill rotation

bone model

tangential force

Figure 8. A spinning, burred drill creates a tangential force that propels the drill along

the bone surface.

Modeling the contact forces between the individual teeth in the drill‘s

geometry and the bone surface would be computationally expensive, so we again

employ our dense sampling approach to approximate tangential drill forces during the

computation of penalty forces.

Each sample that is found to be immersed in the bone (i.e. the red samples in

Figure 5a) computes its own tangential force vector, according to:

 28

 …where ftan is the tangential force created by this sample, p is the position of this

sample, sc is the center of the ―slice‖ of the drill in which this sample lies (the sample

position projected onto the drill axis), and d is the primary axis of the drill (and thus

the axis of rotation), as shown in Figure 7.

The vector (p – sc) is a vector from the tool axis to this sample point, an

approximation of the local surface normal (the true surface normal is generally

unknown, since most samples are not on the surface of the model and thus don‘t have

defined normals). The drill axis vector is normalized to unit length, and the magnitude

of the vector (p – sc) indicates its distance from the tool axis and thus its linear

velocity (since the drill spins at constant rotational velocity, samples farther from the

axis of rotation carry larger linear velocity than close near the axis of rotation). The

cross-product (p – sc) d is thus scaled according to sample velocity, and is

perpendicular to both the drill‘s axis and the approximate surface normal.

Summing these vectors over all samples that are found to lie on the bone

creates a net force that simulates the interaction between the teeth of the drill and the

bone surface. Scaling this vector by -1 is equivalent to reversing the ―handedness‖ of

the drill.

3.2.3.8 Modeling Drill Vibration using Recorded Data

Another key aspect of the haptic sensation associated with drilling is the vibration of

the instrument, which varies with applied force and with burr type. In order to

generate realistic drill vibration frequencies, we outfitted a physical drill with an

accelerometer and collected vibration data at a variety of applied drilling forces.

These data are summarized in Figure 9. The key spectral peaks were identified for

each burr type and used to synthesize vibrations during the simulation. Since we are

driving our haptic feedback device at approximately 1.5 kHz, we are unable to

preserve the highest-frequency vibrations identified in these experimental recordings.

However, we are able to preserve the lower-frequency harmonics and the variations in

vibration associated with changes in burr type and/or changes in applied drilling force.

dscpf)(tan

 29

1030hz 875hz

1049hz 625hz

1030hz 875hz

1049hz 625hz

Figure 9. A spectral representation of drill vibration, collected from cutting (top row)

and diamond (bottom row) drilling burrs, when in contact with bone and when powered

but held away from the bone surface. The frequencies of the largest peaks are

highlighted. The sharp spectral peaks make this data suitable for real-time vibration

synthesis.

3.2.4 Data Manipulation

When bone voxels are removed from our environment, our hybrid data structure

requires that the area around the removed bone be retessellated. Consequently, bone

voxels are queued by our haptic rendering thread as they are removed, and the graphic

rendering thread retessellates the region around each voxel pulled from this queue.

That is, for each removed voxel, we see which of its neighbors have been ―revealed‖

and create triangles that contain the centers of these new voxels as vertices.

Specifically, for each removed voxel v, we perform the following steps:

for each voxel v‟ that is adjacent to v

 if v‟ is on the bone surface

 if a vertex has not already been created

 to represented v‟

 30

 create a vertex representing v‟

 compute the surface gradient at v‟

 queue v‟ for triangle creation

for each queued voxel v‟

 generate triangles adjacent to v‟ (see below)

Once again, a voxel that is ―on the bone surface‖ has a non-zero bone density

and has at least one neighboring voxel that contains no bone density. When all local

voxels have been tested for visibility (i.e. when the first loop is complete in the above

pseudocode), all new vertices are fed to a triangle generation routine. This routine

finds new triangles that can be constructed from new vertices and their neighbors,

orients those triangles to match the vertices‘ surface normals, and copies visible

triangles to the ―visible triangle array‖ (see Section 3.2.7). The reason for ―queuing

triangles for triangle creation‖ is that the generation of triangles – performed in the

second loop above – depends on knowing which local voxels are visible, which is only

known after the completion of the first loop.

3.2.5 Additional Tools

An additional bone modification tool allows the introduction of large bone cuts via a

planar cut tool (see Figure 10). This tool generates no haptic feedback and is not

intended to replicate a physical tool. Rather, it addresses the need of advanced users

to make rapid cuts for demonstration or for the creation of training scenarios. Bone

removal with this tool is implemented by discretizing the planar area – controlled in

six degrees of freedom – into voxel-sized sample areas, and tracing a ray a small

distance from each sample along the normal to the plane. This is similar to the

approach used in [153] for haptic rendering, but no haptic feedback is generated, and

each ray is given infinite ―drilling power‖, i.e. all density is removed from any voxels

through which each ray passes. The distance traced along each ray is controlled by the

user. This allows the user to remove a planar or box-shaped region of bone density,

demonstrated in Figure 10b. This approach will often generate isolated fragments of

bone that the user wishes to move or delete. This operation is discussed in Section

3.2.6.

 31

Figure 10. The use of the cut-plane tool and the independent manipulation of

discontinuous bone regions. (a) The cut-plane tool is used to geometrically specify a set

of voxels to remove. (b) The volume after voxel removal. (c) The flood-filling thread has

recognized the discontinuity, and the bone segments can now be manipulated

independently.

A final set of tools allows the user to manipulate rigid models that can be

bound to bone objects. This is particularly relevant for the target craniofacial

procedures, which center around rigidly affixing metal plates to the patient‘s anatomy.

We thus provide models of several distractors and/or industry-standard bone plates (it

is straightforward to add additional models). The inclusion of these plate models

allows users to plan and practice plate-insertion operations interactively, using

industry-standard plates. Collision detection for haptic feedback is performed using a

set of sample points, as was the case with drilling tools. In this case, the sample points

are generated by sampling 100 vertices of each model and extruding them slightly

along their normals (because these models tend to be very thin relative to our voxel

dimensions) (Figure 11a). For this tool/bone contact, which generally involves objects

with much larger volumes than the drill tools, we elected to use the ray-tracing

approach presented in [153]. This approach allows reasonable haptic feedback with

lower numbers of samples than the volumetric approach we use for our drilling tools

(Section 3.2.3). Since there is no well-defined tool center toward which we can trace

rays for penetration calculation, rays are traced along the model‘s surface normal at

 32

each sample point. At any time, the user can rigidly affix a plate tool to a bone object

with which it is in contact using a button on the haptic device (Figure 11b,c,d).

(a) (b) (c) (d)

Figure 11. The modeling and attachment of rigid bone plates. (a) The surface of a bone

plate after sampling and extrusion. (b) A bone surface before modification. (c) The

same bone surface after drilling, distraction, and plate attachment. (d) The same bone

surface after drilling, distraction, and distractor insertion.

3.2.6 Discontinuity Detection

A critical step in simulating craniofacial procedures is the detection of cuts in the bone

volume that separate one region of bone from another, thus allowing independent rigid

transformations to be applied to the isolated bone segments.

In our environment, a background thread performs a repeated flood-filling

operation on each bone structure. A random voxel is selected as a seed point for each

bone object, and flood-filling proceeds through all voxel neighbors that currently

contain bone density. Each voxel maintains a flag indicating whether or not it has

been reached by the flood-filling operation; at the end of a filling pass, all unmarked

voxels (which must have become separated from the seed point) are collected and

moved into a new bone object, along with their corresponding data in the vertex and

triangle arrays. Figure 12 summarizes this operation and provides an example.

 33

Figure 12. Discontinuity detection by flood-filling. The seed voxel is highlighted in red,

and the shaded (blue) voxels were reached by a flood-filling operation beginning at the

seed voxel. These voxels thus continue to be part of the same bone object as the seed

voxel, while the unshaded voxels on the right have become disconnected and thus are

used to create a new bone object. In a subsequent pass through the flood-filling

algorithm, a third bone object would be created, because the unfilled voxels are further

fragmented.

Figure 10a and Figure 10c display a bone object that has been cut and the

subsequent independent movement of the two resulting structures. Here – for

demonstration – the cut-plane tool is used to create the fracture; during simulated

procedures, fractures are generally created by the drilling/sawing tools.

3.2.7 Graphic Rendering

To take advantage of the fact that the user does not frequently change the simulation‘s

viewing perspective, we maintain two triangle arrays, one containing the complete

tessellation of the current bone volume (the ―complete array‖), and one containing

only those that are visible from positions close to the current camera position (the

―visible array‖). The latter array is initialized at startup and is re-initialized any time

the camera comes to rest after a period of movement. Visible triangles are those with

at least one vertex whose normal points towards (less than 90 degrees away from) the

camera. Because this visibility-testing pass is time-consuming, it is performed in the

background; the complete array is used for rendering the scene during periods of

camera movement (when the visible array is considered ‗dirty‘) and during the

reinitialization of the ‗visible‘ array.

 34

As an additional optimization, we use the nvtristrip library [143] to reorder our

triangle and vertex arrays for optimal rendering performance. We could have further

reduced rendering time by generating triangle strips from our triangle lists, but this

would add significant computational complexity to the process of updating the surface

mesh to reflect changes to the underlying voxel grid.

3.2.8 Bone Dust Simulation

We also build on the work presented in [7] to provide a simulation of bone dust

accumulation, which is particularly critical in otologic procedures. Bone dust tends to

accumulate in the drilling area, and must be suctioned off to enhance visibility of the

bone surface.

Agus et al [7] simulate the behavior of individual particles of bone dust,

sampling a subset of the particles in each rendering pass to minimize the

computational load demanded by the simulation. Since individual particles of bone

dust are not generally visible, it is unnecessary to simulate particulate motion.

Therefore we take an Eulerian approach similar to [186], in which we discretize the

working region into a three-dimensional hashed grid. Rather than tracking individual

particles, we track the density of particles contained in each grid cell. This allows us

to simulate the piling of dust particles, particle flow due to gravity, and particle

movement due to tool contact for all accumulated bone dust, without simulating

individual particles. Gravity and tool forces transfer density between neighboring grid

cells, rather than modifying the velocity of individual particles.

Each grid cell containing bone dust is rendered as partially-transparent

OpenGL quad, whose dimensions scale with the density of dust contained in that cell.

This provides a convincing representation of accumulated particle volume and density,

and does not require that we render each particle (that is, each quantum of density)

individually.

This grid-based approach significantly reduces computation and rendering time

relative to a particle-based (Lagrangian) approach. Coupled with the hash table we

use to minimize memory consumption for the grid, we are able to render large

quantities of accumulated bone dust without impacting the interactive performance of

 35

the application. Figure 13 shows a volume of accumulated bone dust and the suction

device used by the trainee to remove it. The suction device is controlled with an

additional Phantom haptic interface.

Figure 13. Bone dust simulation. The user has removed a volume of bone, which has

now accumulated as bone dust. The physical simulation has allowed the bone dust to fall

to the bottom of the drilled area. The user is preparing to remove the bone dust with the

suction device.

3.2.9 Data-Driven Sound Synthesis

Sound is a key source of intraoperative feedback, as it provides information about drill

contact and about the nature of the underlying bone. We simulate the sound of the

virtual burr as a series of noisy harmonics, whose frequency modulates with applied

drilling force. Building upon the harmonic-based synthesis approach presented in

[34], we have recorded audio data from cutting and diamond drill burrs applied to

cadaver temporal bone a under a series of drilling forces, in order to determine the

appropriate frequencies for synthesized sound, as well as the dependence of this data

 36

on drill type and applied drilling force. Figure 14 summarizes the spectral information

collected from diamond and cutting burrs.

3166hz 3047hz 2173hz

3102hz 970hz 1888hz

3166hz 3047hz 2173hz

3102hz 970hz 1888hz

3166hz 3047hz 2173hz

3102hz 970hz 1888hz

Figure 14. A spectral representation of audio data collected from diamond (top row)

and cutting (bottom row) drilling burrs. Columns represent no bone contact, bone

contact without significant pressure, and bone contact with a typical drilling pressure

(applied by an experienced surgeon). The sharp spectral peaks and distinct variation

among drill types and contact forces make this data suitable for real-time synthesis.

Sound can also be a key indicator of bone thickness intraoperatively; sound

quality and frequency change significantly as the drill contacts a thin layer of bone,

providing a warning that the surgeon is approaching sensitive tissue. In our simulator,

the pitch of the synthesized sound increases when the drilled area becomes thin. In

order to estimate the thickness of bone regions, we used a raytracing algorithm similar

to that used for haptic rendering in [153]. At each voxel that is determined to be on

the surface of the bone, the surface gradient is used to approximate the surface normal,

and a ray is cast into the bone along this normal. The ray is traced until it emerges

from the bone volume, and the thickness is estimated as the distance from the ray‘s

entry point to its exit point. For sound synthesis, this thickness is averaged over all

surface voxels with which the drill is in contact. Below an empirically selected

thickness threshold, sound frequency increases linearly with decreasing bone

thickness. The slope of this relationship is selected so that the key harmonics span the

same range of frequencies in simulation that they do in our measured data.

 37

3.3 Results: Construct Validity

3.3.1 Experimental Procedure

The surgical simulation community defines several levels of ―validity‖ – the ability for

a simulator to mimic the real-world properties of the environment it aims to represent.

The present study assesses the ―construct validity‖ of our simulation environment: the

ability to explain subject behavior in simulation with appropriate parameters

describing subject experience level. In other words, expert surgeons should perform

objectively better on a simulated surgical task than novices.

For the present study, fifteen right-handed participants were asked to perform a

mastoidectomy (removal of a portion of the temporal bone and exposure of relevant

anatomy) in our simulator. Participants included four experienced surgeons, four

residents in head and neck surgery with surgical experience, and seven novices with

no surgical experience.

Participants were presented with a tutorial of the simulator and were given

fifteen minutes to practice using the haptic devices and the simulator‘s user interface.

Participants were then presented with an instructional video describing the target

procedure, and were given access – before and during the procedure – to still images

indicating the desired appearance of the bone model at various stages in the procedure

(Figure 15). Participants were asked to perform the same procedure twice.

 38

Figure 15. Still images presented to experimental participants, indicating the stages of

the mastoidectomy procedure.

Each participant‘s hand movements, haptic forces, and surgical interactions

were logged to disk then later rendered to video. Videos were scored on a scale of 1 to

5 by an experienced head and neck surgery instructor; the instructor was not aware of

which videos came from which subjects and viewed them in randomized order. This

scoring approach is similar to the approach used to evaluate resident progress in a

cadaver training lab. Our hypothesis is that participants with surgical experience

should receive consistently higher scores than those with no surgical experience.

Figure 16 shows a summary of the experimental results. Participants with

surgical experience received a mean score of 4.06, and novices received a mean score

of 2.31, a statistically significant difference according to a one-tailed t-test (p <

0.0001). This clear difference in performance when operating in our simulator

demonstrates the construct validity of the system.

 39

Novices Surgeons
1

2

3

4

5

M
e

a
n

 S
c
o

re

Figure 16. Mean scores for simulated mastoidectomies performed by novice participants

(left) and participants with surgical experience (right). Error bars indicate 95%

confidence intervals.

3.4 Novel Training Techniques

The previous subsections of this section discussed our simulator‘s approach to

replicating interaction with bones, i.e. replicating the features available in a traditional

cadaver-based training lab. The following section discusses our incorporation of

training features that are not possible in a traditional training lab, and thus demonstrate

the potential for simulation to not only replicate but also extend existing training

techniques.

3.4.1 Haptic Tutoring

Surgical training is typically focused on visual observation of experienced surgeons

and verbal descriptions of proper technique; it is impossible for a surgeon to

physically demonstrate the correct ‗feel‘ of bone manipulation with physical tools.

With that in mind, we have incorporated a ‗haptic tutoring‘ module into our

environment, allowing a trainee to experience forces that are the result of a remote

user‘s interaction with the bone model.

 40

Ideally, the trainee would experience both the movements of the instructor‘s

tool and the force applied to/by the instructor, but it is difficult to control both the

position and the force at a haptic end-effector without any control of the compliance of

the user‘s hand. To address this issue, we bind the position of the trainee‘s tool to that

of an instructor‘s tool (running on a remote machine) via a low-gain spring, and add

the resulting forces to a ‗playback‘ of the forces generated at the instructor‘s tool. I.e.:

Ftrainee = Kp(Ptrainee – Pinstructor) + Finstructor

…where Finstructor and Ftrainee are the forces applied to the instructor‘s and trainee‘s

tools, and Pinstructor and Ptrainee are the position of the instructor‘s and trainee‘s tools. Kp

is small enough that it does not interfere significantly with the perception of the high-

frequency components transferred from the instructor‘s tool to the trainee‘s tool, but

large enough that the trainee‘s tool stays in the vicinity of the instructor‘s tool. In

practice, the error in this low-gain position controller is still within reasonable visual

bounds, and the trainee perceives that he is experiencing the same force and position

trajectory as the instructor.

We use the same approach and the same force constants for ―haptic playback‖,

allowing a user to play back force data collected from a previous user‘s run through

our system. This has potential value both for allowing trainees to experience the

precise forces applied during a canonically correct procedure, and for allowing an

instructor to experience and evaluate the precise forces generate during a trial run by a

trainee.

3.4.2 Neurophysiology Console Simulation

Another goal of our simulation environment is to train the surgical skills required to

avoid critical and/or sensitive structures when using potentially dangerous tools. The

inferior alveolar nerve is at particular risk during most of the procedures this

environment is targeting. We thus incorporate a virtual nerve monitor that presents

the user with a representation of the activity of nerve bundles in the vicinity of the

 41

procedure (Figure 17a). Nerves are currently placed explicitly for training scenarios;

future work will include automatic segmentation of large nerves from image data.

This approach will also potentially contribute to the simulation-based training

of a complete surgical team, which typically involves several technicians focused on

neurophysiology monitoring. Simulated neural data is streamed out via Ethernet for

remote monitoring, and can be visualized on a console that is similar to what would be

available intraoperatively to a technician. Our system uses the visualization and

analysis software distributed with the Cerebus neural recording system

(CyberKinetics, Inc.) (Figure 17b).

(a)

(b)

(a)

(b)

Figure 17. Virtual neurophysiology monitoring. (a) The user drills near a simulated

nerve (in blue) and views a real-time simulated neural monitor, which also provides

auditory feedback. (b) A remote user visualizes the activity of several simulated nerves,

observing activity bursts when the user approaches the nerve structures.

3.5 Automated Evaluation and Feedback

Another exciting possibility for virtual surgery is the use of simulation environments

to automatically evaluate a trainee‘s progress and provide targeted feedback to help

improve a user‘s surgical technique.

 42

A straightforward approach to evaluating a trainee‘s performance on the

simulator is determining whether a given objective has been achieved while avoiding

injury to vulnerable structures (such as nerves, ossicles, or veins). However, many of

the finer points of technique that surgeons learn are taught not because failure to

adhere to them will necessarily result in injury, but because it increases the likelihood

of injury. Therefore, it is useful to be able to quantify the risk inherent in the trainee's

performance.

This section describes several metrics for evaluating a user‘s bone-drilling

technique, and our approach to visualizing these metrics. We also present approaches

to validating these metrics (confirming that they are medically meaningful) and initial

validation results.

3.5.1 Visibility Testing

One of the most important ways in which risk is minimized in temporal bone surgery

is by taking care to only remove bone that is within the line of sight, using a

―saucerizing‖ drilling technique (removing bone so as to create a saucer-shaped cavity

on the bone surface). This enables the surgeon to avoid vulnerable structures just

below the bone surface, using subtle visual cues that indicate their locations. If

instead some bone is removed by ―undercutting‖ (drilling beneath a shelf of bone that

obscures visibility), there is increased risk of structure damage.

In our environment, as each voxel of bone is removed, the simulator

determines whether this voxel was visible to the user at the time of removal. Making

use of the same ray-tracing techniques that are used for haptic rendering (Section

3.2.5), a line is traced from the removed voxel to the virtual eye point. If any voxels

(other than those currently in contact with the drill) are intersected by this ray, the

removed voxel is determined to be invisible.

During or after a virtual procedure, a user can visualize the

visibility/invisibility of every voxel he removed, to explore the overall safety of his

technique and find specific problem areas. Voxels that were visible when removed are

shown in one color while those that were obscured are rendered in another color

(Figure 18). The scene may also be rotated and rendered with only selected structures

 43

visible, allowing unobstructed visualization of the locations of the removed voxels and

their proximities to crucial structures.

Figure 18. Visualization of removed voxel visibility. In this simulation, the trainee has

correctly “saucerized" on the right side, removing only visible bone, while he

"undercut" on the left side, removing bone that was hidden by other bone. This

interactive visualization – in which the bone itself is not rendered – displays the regions

in which he exercised proper technique (visible voxels in green) and regions in which he

did not (obscured voxels in red). Undercutting in close proximity to the sigmoid sinus (in

blue) was dangerous as he could not see the visual cues indicating the vein's location

below the bone surface.

Although it makes intuitive sense that voxel visibility should be an appropriate

metric for evaluating a user‘s performance, it is important to validate this metric – and

all automatic metrics – against a clinically-standard assessment of user performance.

In this case, we use the data collected from the user study presented in Section 3.3,

which includes complete simulated procedures by experts and novices, along with

scores assigned to each simulated procedure by an experienced surgical instructor. A

metric that correlates well to an instructor‘s manually-assigned scores is likely to be an

effective metric for automatic user evaluation.

Figure 19 shows the results of correlating computed voxel visibilities to an

instructor‘s score (on a scale of 1 to 5) for each simulated procedure performed by

 44

each of our study participants. Linear regression shows a correlation coefficient of

0.68, which is particularly high considering that the manual evaluation was based on a

wide array of factors, only one of which was voxel visibility. This approach is

suitable for assessing the effectiveness of individual metrics, which can be combined

to form an overall score for a simulated procedure.

0 1 2 3 4 5 6
70

75

80

85

90

95

100

Score assigned by experienced instructor

P
e

rc
e

n
t

o
f

v
o

x
e

ls
 r

e
m

o
v

e
d

 t
h

a
t

w
e

re
 v

is
ib

le

Figure 19. Relationship between expert-assigned scores (x axis) and computed voxel

visibility (y-axis), along with a linear fit (R=0.68, p<0.001). Each dot represents one pass

through the simulated procedure by one subject. The strong correlation supports the

value of computed visibility as an automatic performance metric.

3.5.2 Learning Safe Forces

Another component of safe drilling is applying appropriate forces and operating the

drill at appropriate speeds. The acceptable range of forces and speeds is closely

related to the drill‘s distance from vulnerable structures. However, this function is

difficult for a human, even an expert surgeon, to precisely quantify. Therefore, we

learn maximal safe forces and speeds via statistical analysis of forces, velocities, and

distances recorded during a run of the simulation by experienced surgeons. Trainees‘

 45

performance can then be compared to the experts‘ values, and areas in which

excessive speeds or forces were applied can be visualized and presented to the user.

For example, Figure 20 shows the force profiles of all expert and novice study

participants as they approached a critical and sensitive structure, the chorda tympani, a

branch of the facial nerve. At the instant that any voxel within 3cm of this structure

was removed, the user‘s applied force was recorded. These samples were then sorted

by distance from the nerve and binned into 0.2cm intervals; the mean value of each

bin was computed and plotted in Figure 20. The profiles for experts and novices are

significantly different, as indicated by the plotted confidence intervals. Experts clearly

tend to use lower forces overall in the vicinity of this critical structure, and reduce

their forces as they approach, a trend not seen in the novice plots.

0 0.5 1 1.5 2 2.5 3
0.1

0.15

0.2

0.25

0.3

0.35

0.4

Distance from Chorda Tympani (cm)

M
e

a
n

 f
o

rc
e

 (
N

)

Experts

Novices

Figure 20. Forces applied by experts and novices in the vicinity of the chorda tympani (a

sensitive branch of the facial nerve). Error bars indicate 95% confidence intervals.

Experts display a significantly different force profile in this region than novices, as

experts tend to reduce their applied forces when approaching the nerve.

 46

3.5.3 Learning Correct Bone Regions for Removal

In addition to instantaneous metrics like force and visibility, an instructor evaluating a

surgical trainee would also evaluate the overall shape of the drilled region after a

complete procedure, i.e. the set of voxels removed by the trainee.

To capture this important criterion in a quantitative metric, we use a Naïve

Bayes approach to categorize ―correct‖ and ―incorrect‖ drilling regions. We assume

that voxels from the full voxel mesh are chosen for removal (drilling) according to

separate distributions for experts and novices. For each voxel, we compute the

probability that an expert would remove this voxel and the probability that a novice

would remove this voxel. Then for each subject‘s run through a simulated procedure,

we look at the set of removed voxels and ask ―what was the probability that an expert

(or novice) performed this procedure?‖, by multiplying together the probabilities of

each removed voxel. We then compute the ratio of these cumulative probabilities

(pexpert and pnovice) and take the log of that ratio, to compute a scalar value that

estimates the correctness of the drilled region (log(pexpert/pnovice)).

We would like to show that this is a valid performance metric by correlating it

with scores assigned by an experienced instructor, as we did in Section 3.5.1. Figure

21 shows the result of this analysis, along with a linear regression onto the scores

assigned by an instructor (R=0.76). Again, the high correlation suggests that this is a

valuable component in a suite of individual metrics than can produce an accurate

estimate of trainee performance.

 47

0 1 2 3 4 5 6
-3000

-2500

-2000

-1500

-1000

-500

0

500

1000

1500

2000

Score assigned by experienced instructor

E
s

ti
m

a
te

 o
f

c
o

rr
e

c
tn

e
s

s
 o

f
d

ri
ll
e

d
 r

e
g

io
n

Figure 21. Relationship between expert-assigned scores (x axis) and estimate of drilled

region correctness (y-axis), along with a linear fit (R=0.76, p<0.001). Each dot

represents one pass through the simulated procedure by one subject. The strong

correlation supports the validity of our drilled-region-correctness estimate as an

automatic performance metric.

3.6 Conclusion and Future Work

We have described a system for visuohaptic simulation of bone surgery,

including a volume-sampling algorithm for haptic rendering and a hybrid data

structure for linking visual and haptic representations of volume data. We presented

empirical results evaluating the construct validity of our system, and we presented our

approach to building task-level scenarios and evaluation mechanisms on top of our

physical simulation.

Subsequent work on the simulation environment will focus on incorporating a

representation of soft tissue simulation into our environment, to enable the

representation of more complete procedures, including, for example, skin incision and

tumor resection. Subsequent work on our automated evaluation techniques will focus

 48

on the development of additional automated metrics and the visualization of

automated metrics.

Supplemental material for this section, including movies and images of the

simulation environment, is available at:

http://cs.stanford.edu/~dmorris/projects/bonesim/

http://cs.stanford.edu/~dmorris/projects/bonesim/

 49

4 Haptic Training Enhances Force Skill

Learning

Traditional haptic rendering techniques focus primarily on simulation: a virtual

environment uses a haptic device to replicate a sensation experienced in the physical

world. This is the goal, for example, of the haptic rendering techniques described in

Section 3. This approach has been used in most haptic simulation environments

oriented toward skill training. This paradigm is analogous to practicing any skill in

the physical world: a skill is performed repetitively under realistic conditions to

improve a trainee‘s ability to perform that skill in the future.

 An alternative paradigm uses a haptic device to present forces that do not

represent a ―realistic‖ interaction with a simulated environment. The possibility of

generating haptic forces other than physical interaction forces appeared intriguing

during the development of the simulation environment described in Section 3. In

particular, haptic feedback offers the possibility of demonstrating manual skills, with

the user passively receiving information via the haptic device. However, it was not

obvious that force-sensitive skills could be learned in this manner, so we chose to

create an abstract task that would allow us to evaluate the potential for haptic feedback

to teach force-sensitive motor skills. This task is the topic of Section 4 of this

dissertation.

 The surgical skills required for bone drilling are sensitive to both movement

(position) and force, and are guided by both visual landmarks and force feedback.

This section thus presents an experiment in which subjects are taught visually-guided

 50

patterns of forces and are asked to recall those forces. The results indicate that this

form of training – which we refer to as ―haptic mentoring‖ – can indeed augment

visual training for the class of skills we examined.

Related techniques have been implemented in our simulation environment.

The simulator guides a user through the surgical field, displaying ―correct‖ interaction

forces (those experienced previously by a trained surgeon). Data can be played back

from a file or streamed in real-time from a surgeon using our environment (Section

3.4.1) (Figure 1). Future work will assess the utility of this feature in the context of

surgical training.

The worked presented here has been submitted as [129].

This section explores the use of haptic feedback to teach an abstract motor skill that

requires recalling a sequence of forces. Participants are guided along a trajectory and

are asked to learn a sequence of one-dimensional forces via three paradigms: haptic

training, visual training, or combined visuohaptic training. The extent of learning is

measured by accuracy of force recall. We find that recall following visuohaptic

training is significantly more accurate than recall following visual or haptic training

alone. This suggests that in conjunction with visual feedback, haptic training may be

an effective tool for teaching sensorimotor skills that have a force-sensitive component

to them, such as surgery. We also present a dynamic programming paradigm to align

and compare spatiotemporal haptic trajectories.

4.1 Introduction

Haptic feedback has become an integral component of numerous simulation systems,

particularly systems designed for teaching surgical skills (e.g. [18], [128], [209]).

Haptic rendering in nearly all such simulation environments has been designed to

realistically replicate the real-world forces relevant to a particular task. Recent results

 51

suggest that simulation environments can contribute to users‘ learning of real motor

skills [215] and to users‘ perception of virtual object shapes [92]. In contrast, Adams

et al [3] found no significant learning benefit from haptic feedback for a manual

assembly task, despite an overall benefit from training in a virtual environment.

Although haptic feedback is often used to replicate real-world interaction

forces, haptics has the potential to provide cues that are not available in the physical

world. In particular, haptic feedback can be used as a channel for presenting motor

patterns that a user is expected to internalize and later recall. Feygin et al [58] refer to

this approach as ―haptic guidance‖, and found that haptic feedback contributes to

learning spatiotemporal trajectories. Williams et al [211] employed this technique in a

medical simulator and also found that it contributed to learning position trajectories.

Patton and Mussa-Ivaldi [150] employ an implicit version of this technique, allowing

users to adapt to a movement perturbation in order to teach a motion that is opposite to

the perturbation. In contrast, Gillespie et al [66] used a similar approach to teach a

motor control skill, and found no significant benefit from haptic training, although

haptic training did affect the strategy that participants used when performing the motor

skill in the real world.

However, little work to date has demonstrated the ability of haptic feedback to

teach a precise sequence of forces that should be applied as a user moves along a

trajectory in space. This type of learning is relevant to force-sensitive, visually-guided

tasks, particularly including numerous surgical procedures ([206], [200]). Yokokohji

et al [214] presented forces contrary to a correct level of force for an object-

manipulation task, but found that this approach was ineffective for the task they were

evaluating. More recently, Srimathveeravalli and Thenkurussi [184] used haptic

feedback to teach users to replicate both shape and force patterns, but found

insignificant benefit of haptic feedback for learning shape patterns, and did not find

haptic training to be beneficial at all for learning force patterns.

The present work examines a task in which the participants‘ goal was to learn

and recall a pattern of forces along a single axis. In this context, we demonstrate that

 52

haptic feedback is beneficial for learning a series of forces along a movement

trajectory.

4.2 Methods

We describe an experiment that assesses the impact of haptic training on participants‘

ability to learn a sequence of forces. Participants were presented with sequences of

forces via three training modalities – visual, haptic, and combined visuohaptic – and

were asked to recall those forces. While learning and recalling forces, participants

were passively moved along a spatial trajectory, which was also presented visually.

The participants used this trajectory as position references for force patterns. A more

detailed description of this experiment follows.

4.2.1 Participants

Twelve right-handed participants, nine male and three female, aged 19 to 21, took part

in the present study. All were undergraduate students. None had previous experience

with haptic devices. Participants were compensated with a $5 gift certificate, and an

additional $10 gift certificate was offered to the three participants with the highest

overall score (across all conditions) as incentive. Written consent was obtained from

all participants; the consent form was approved by the Stanford University

Institutional Review Board.

4.2.2 Apparatus

Visual information was presented on a 19‖ LCD monitor placed approximately 2.5‘

from the user. Haptic feedback was presented via an Omega 3-DOF force-feedback

device (Force Dimension, Lausanne, Switzerland), resting on a table in front of the

monitor. This device was selected because it was able to deliver the sustained forces

required for this experiment (up to 8N for up to twenty seconds), which other

commercially-available haptic devices could not. Participants were able to rest their

elbow on a table. Software was run on a dual-CPU 2GHz Pentium 4 computer

running Windows XP, and was developed in C++ using the CHAI toolkit [42]. The

 53

software used for this experiment has been made available online; see Appendix A for

download information.

4.2.3 Stimuli

The following axis convention was used in the present study:

 The x axis runs from the participant‘s left to the participant‘s right (parallel to the

table)

 The y axis runs upward (perpendicular to the table)

 The z axis runs toward the user (in and out of the display plane)

Spatial trajectories were generated for each trial to passively move the

participant‘s hand from left to right while sinusoidally varying the participant‘s hand

position along the z axis. The spatial trajectory had no y component; i.e. it was

entirely in a plane parallel to the table. Trajectories spanned 10cm in the horizontal

(x) direction and 6cm in the z direction, and moved the user at a constant velocity of

1.6cm/s. The z component of each trajectory was the sum of twenty sinusoids with

random frequencies, phases, and DC offsets, with a maximum spatial frequency of 0.3

cycles per centimeter. After summing the sinusoids, each trajectory was scaled to fit

the 6cm range in z. A typical spatial trajectory is presented in Figure 22.

Figure 22. A typical spatial trajectory used in our experiment.

 54

Force patterns were generated for each trial along the y axis, perpendicular to the

plane of movement along the spatial trajectory. These patterns are the values that the

participant was asked to learn in each trial. Force patterns were generated as functions

of time, but because the participant was moved along the trajectory at a constant rate,

force patterns were also fixed relative to the spatial trajectory. The temporal force

patterns were generated as the sum of four sinusoids with random frequencies, phases,

and DC offsets, with a maximum frequency of 0.2Hz. After sinusoidal summing,

force patterns were scaled into the range [0N,10N]. To introduce limited higher-

frequency peaks without creating unreasonably ―jagged‖ force patterns, parabolic

―bumps‖ were randomly blended into each sinusoidal trajectory; these bumps were

allowed to range up to 12N. After summing the base pattern and the parabolic bumps,

the final force pattern was ramped up and down over the first and last one second of

the pattern to avoid jerking the haptic device. A typical force pattern is presented in

Figure 23. This graph represents the magnitude of the normal force the participant

was asked to learn; the learned force was in all cases in the downward (-y) direction.

Figure 23. A typical force pattern used in our experiment.

4.2.4 Experimental Conditions

The following 3 training conditions were employed in a blocked design: haptic

display of normal force (H), visual display of normal force (V), and combined

visuohaptic display of normal force (V+H). In all three conditions, the participant‘s

 55

hand was pulled along the spatial trajectory (in the xz plane) via a proportional-

derivative (PD) controller with proportional and derivative gains of 0.9N/mm and

0.1N/mm, respectively. Offline analysis showed no significant lag behind the ideal

trajectory in any participant‘s data, indicating that the gain was sufficiently high. The

visual display showed the spatial trajectory, along with a display of the participant‘s

current device position, under all three training conditions.

In the haptic (H) training condition, the haptic device applied the opposite of

the embedded force pattern directly to the user along the y axis (perpendicular to the

movement plane). The participant was instructed to keep the device in the movement

plane, i.e. to precisely oppose the upward force applied by the Omega device. In this

manner, the participant practiced applying the sequence of forces that he/she was

expected to learn. Figure 24a shows the display that was presented to the user in the H

condition.

(a) (b) (c)

Figure 24. The visual representations of the spatial trajectory and normal force

presented to the user in the (a) haptic training condition (no representation of force), (b)

visual training condition (blue bar representing current target force), and (c) combined

visuohaptic training condition (blue bar representing current target force magnitude

and green bar current user-applied force magnitude).

In the visual (V) training condition, the haptic device was constrained to the xz

plane by a PD controller with P and D gains of 2.0N/mm and 0.3N/mm, respectively.

No haptic representation of the embedded force pattern was presented to the user. As

the user was pulled along the trajectory, an on-screen blue vertical bar changed its

height to indicate the magnitude of the target normal force at the current trajectory

position. This bar moved along the trajectory along with the representation of the

participant‘s current device position, so the participant could visually attend to both

 56

simultaneously. Figure 24b shows the display that was presented to the user in the V

condition.

In the combined visuohaptic (V+H) training condition, the haptic device was

constrained to the xz plane as in the visual (V) condition, and the current target force

is displayed as a blue bar, as in the visual condition. However, an additional graphical

bar is presented in green. The additional bar indicates the normal force currently

being applied by the participant. Participants were instructed to match the heights of

the blue and green bars. Thus the participants were – via the plane constraint –

receiving haptic feedback equal to the target force pattern. Figure 24c shows the

display that was presented to the user in the V+H condition.

A fourth condition – the test (T) condition – was used following all training

conditions to evaluate learning through force recall. The visual display in this

condition was identical to that used in the haptic (H) condition; no visual indication of

force was provided. In the test condition, the haptic device was constrained to the xz

plane as in the visual (V) condition. The user was instructed to apply the learned

pattern of forces in the y direction (normal to the spatial trajectory).

In all three conditions, a small square appeared on screen when the device

reached saturation; this was added to be ―fair‖ to the visual training condition, which

otherwise did not provide any indication of absolute force magnitude.

4.2.5 Experimental Procedure

Each participant was given an introduction to each of the conditions described above,

and was then asked to participate in 72 trials, with a ten-minute break after 36 trials to

prevent fatigue. A trial consisted of a single training/testing pair. For each trial, the

subject was presented with a trajectory using one of three training conditions (H, V,

V+H) and was immediately tested on that trajectory using the test (T) condition

described above. Trials were grouped into blocks of three training/testing pairs that

repeated the same trajectory using the same training condition.

For example, for a V condition trial block, the participant was trained with the

visual bargraph display of force by traversing the trajectory from left to right once.

After returning the stylus tip position to the left of the trajectory, the participant was

 57

immediately tested for force recall once (thus completing one trial). This

training/testing pair was then repeated twice more (for a total of three trials per block).

A new training condition was then selected and a new trajectory was randomly

generated for the next trial block.

In summary, each participant completed a total of 72 trials, representing 24

trial blocks for each of the H, V and V+H conditions.

Throughout the experiment, the device positions and applied normal forces

were recorded to disk for offline analysis.

4.3 Data Analysis

Each testing trial is scored individually for accuracy of force recall. The input to the

scoring mechanism is two force-time curves: the ―target‖ force pattern and the

―applied‖ force pattern. If these curves are similar, the trial should receive a high

score for recall accuracy. A simple approach to computing a score might simply

subtract the two curves and compute the root-mean-squared (RMS) difference at each

point. The synthetic example shown in Figure 25 illustrates why this is an inadequate

approach. In this figure, the black line represents a synthetic ―correct‖ force pattern

with three clear peaks. The red line represents the force pattern recorded from a

hypothetical user who correctly recalled the three force peaks, each with a slight

timing error. The green line represents the force pattern recorded from a hypothetical

user who didn‘t apply any force at all. A simple RMS-difference approach to scoring

would assign a significantly lower score to the red curve than to the green curve, even

though the red curve represents a significantly more accurate recall. Feygin et al [58]

computed an optimal linear transformation (scale and shift) to correct for similar

errors. This approach, however, will not adequately align all three peaks in this

example, because the three peaks are offset in different directions. In other words,

different regions of the curve are scaled differently. This problem is even more

significant in real data series, which are more complex than this synthetic example.

 58

time

force

time

force

Figure 25. A synthetic example illustrating the need for non-affine trajectory alignment.

The black line represents a synthetic “correct” force pattern. The red line represents the

force pattern recorded from a hypothetical user who correctly recalled the three force

peaks, and the green line represents the force pattern recorded from a hypothetical user

who didn’t apply any force at all.

To address this problem and properly assess recall accuracy participant to local

timing errors, we employed a scoring scheme based on dynamic programming (DP).

This approach has often been employed to align curves for shape recognition ([13],

[138], [154]) and speech recognition [167], and a similar approach was used by Patton

and Mussa-Ivaldi [150] for matching ―haptic attributes‖. We describe our adaptation

of dynamic programming for aligning force/time curves.

For each trial, the target and applied force patterns are resampled to a common

time base, and the applied force patterns are low-pass filtered by a box filter with a

width of 100 milliseconds. An error matrix is then constructed to describe how well

each point on the target pattern ―matches‖ each point on the applied pattern. If the

resampled trajectories are 1000 samples long, this matrix contains 10002 entries. The

entry at location (i,j) answers the question: ―how similar is point i in the target force

pattern to point j in the applied force pattern?‖ For this experiment, each entry in the

error matrix is a weighted sum of the RMS difference in forces and the RMS

difference in slopes (df/dt values) between the two points being compared. A penalty

value is also specified to the dynamic programming algorithm to penalize time

distortions. Dynamic programming is then used to find an optimal (minimum-cost)

pairing between samples on the target and applied curves. Figure 26 shows the

alignment suggested by dynamic programming for a single trial.

 59

0 2 4 6 8 10 12 14 16 18 20

0

2

4

6

8

10

12

Time (seconds)

F
o

rc
e
 (

N
)

Figure 26. The alignment computed by dynamic programming for a single trial. The

red curve is the target force pattern, the green curve is the applied force pattern, and the

blue lines connect points on each curve that are aligned by dynamic programming.

The applied force pattern is warped according to this alignment to lie on the

same time base as the target force pattern. Figure 27 shows the same trial after

warping the applied force pattern according to the DP result.

0 2 4 6 8 10 12 14 16 18 20

0

2

4

6

8

10

12

Time (seconds)

F
o

rc
e

 (
N

)

 60

Figure 27. The target (red) and applied (black) forces for a single trial after warping the

applied forces according to the results of dynamic programming (unwarped forces are in

Figure 26).

After DP and warping, a score is assigned to each trial as a weighted average

of the DP alignment cost, the RMS difference between the two curves after warping,

and the RMS difference between the two curves‘ slopes after warping. Weights were

adjusted empirically to match visual assessments of recall accuracy without

knowledge of the experimental conditions for each of the assessed trials. These

weighted scores are used to assess the quality of recall for each trial. A score of 0

indicates perfect recall; larger scores indicate lower recall accuracy.

4.4 Results

Scores are pooled over each training condition, allowing us to compare the recall

quality for each training condition (288 recall trials for each condition). A one-way

ANOVA confirms a significant difference among the three training paradigms (p <

0.001). Figure 28 shows the mean recall error for each training paradigm with 95%

confidence intervals. One-tailed T-tests show that visual training promotes

significantly more accurate recall than haptic training (p=0.002), and that visuohaptic

training promotes significantly better recall than visual training (p=0.01).

Haptic Visual Visuohaptic
0

0.2

0.4

0.6

0.8

1

1.2

1.4

N
o

rm
a

li
z
e
d

 m
e

a
n

 r
e

c
a
ll
 e

rr
o

r

 61

Figure 28. Mean recall error (in relative units) for each training paradigm. Error bars

indicate 95% confidence intervals.

Table 1 presents the paradigms that promoted the most and least accurate recall

for each participant. We observe that 9 of 12 participants had the lowest mean error in

the visuohaptic training mode, and only 1 of 12 participants had the highest mean error

in the visuohaptic training mode. This is consistent with the results presented in

Figure 28, indicating again that visuohaptic training is the most effective paradigm.

Subject Best paradigm Worst paradigm

1 Visuohaptic Visual

2 Visuohaptic Haptic

3 Visual Haptic

4 Visuohaptic Visual

5 Visuohaptic Haptic

6 Visual Visuohaptic

7 Visuohaptic Haptic

8 Haptic Visual

9 Visuohaptic Haptic

10 Visuohaptic Haptic

11 Visuohaptic Haptic

12 Visuohaptic Haptic

Table 1. Training paradigms promoting the most and least accurate mean recall for

each subject.

4.5 Discussion and conclusion

The results presented here demonstrate that participants are better able to memorize

instructed force patterns when those patterns are presented both visually and

haptically, rather than via either modality alone. This is in contrast to the result

presented by Srimathveeravalli and Thenkurussi [184], who asked participants to

 62

replicate a force pattern and a position trajectory simultaneously. Their results show

that including force information in a skill training paradigm produced lower overall

error in participants‘ recall of positional information, but higher overall error in the

participants‘ recall of forces. However, the task they were exploring was significantly

more complex: users were asked to recall both force and position in multiple degrees

of freedom. Our experiment focused on force alone – with position provided

passively as a reference – and only focused on a single axis of force. This more

focused task is likely the basis for the difference in results. Additionally, their

experiment used smaller movements and a task and device with lower dynamic range,

which may have limited participants‘ ability to recall force information.

Our results also show that haptic training alone is significantly less effective

for this task than visual training alone. This is somewhat surprising, since the task is a

force-specific task. It is likely that the novelty of memorizing information presented

haptically was a confounding factor; visual learning is so pervasive in everyday life

that our results may understate the relative potential for learning via haptics alone.

The effectiveness of combined visuohaptic training suggests that haptic

training may play an important role in teaching skills like surgery, which are visually-

guided but often require different normal and tangential forces to be applied at

different places in the workspace. The results presented here suggest a role not only

for the use of haptic simulation incorporating simulated environmental feedback, but

also active presentation of ―correct‖ forces in a surgical context. These forces may

come from online interaction with an experienced instructor, a paradigm we refer to as

―haptic mentoring‖, or from playback of prerecorded forces. Toward this end, we

have incorporated the approach presented here into a surgical simulation system [126],

and future work will include evaluation of the system‘s ability to transfer force-

sensitive skills to users.

Additionally, we plan to conduct further experiments to explore the roles

played by visual and haptic information in the combined visuohaptic training

paradigm. This study was designed to evaluate the overall effectiveness of each

paradigm in training force patterns, but additional experiments may allow us to

 63

identify that certain frequency components of the target force patterns are being

conveyed through one modality or the other.

4.6 Software availability

The software used to conduct this experiment runs on Windows XP and is available

for download, along with data-manipulation scripts for Matlab and basic

documentation, at:

http://cs.stanford.edu/~dmorris/haptic_training

http://cs.stanford.edu/~dmorris/haptic_training

 64

5. Automatic Preparation, Calibration, and

Simulation of Deformable Objects

Although the procedures simulated by our environment focus primarily on interacting

with bone (the topic of Section 3), interacting with deformable tissue constitutes a

significant component of any surgical procedure. Modeling deformation at interactive

rates has traditionally been one of the most complex problems in computer graphics,

and has likely been the most significant technological factor limiting the development

and popularization of medical simulation. Many proposed solutions work well for

special cases, but do not generalize well or require significant amounts of manual

preprocessing.

 This section does not claim to solve the complete problem of interactive

deformation; rather, it presents a set of solutions that form a complete pipeline from

surface mesh to deformable object, focusing on mesh generation, calibration of

deformation parameters to a finite element reference model, and interactive rendering.

We leverage and extend existing simulation techniques, particularly [199], to address

the broader problem of fitting a deformation model into a medical simulation

environment. It is our goal to use the approaches presented here to incorporate soft

tissue components – such as tumors and deformable components of the inner ear – into

the simulator presented in Section 3.

The work presented here was published as [130].

 65

Many simulation environments – particularly those intended for medical simulation –

require solid objects to deform at interactive rates, with deformation properties that

correspond to real materials. Furthermore, new objects may be created frequently (for

example, each time a new patient‘s data is processed), prohibiting manual intervention

in the model preparation process. This paper provides a pipeline for rapid preparation

of deformable objects with no manual intervention, specifically focusing on mesh

generation (preparing solid meshes from surface models), automated calibration of

models to finite element reference analyses (including a novel approach to reducing

the complexity of calibrating nonhomogeneous objects), and automated skinning of

meshes for interactive simulation.

5.1 Introduction and Related Work

5.1.1 Background

Interactive physical simulation has become a critical aspect of many virtual

environments. Computer games are increasingly using physical simulation to allow

players a wider range of interactions with their surroundings; this has become such a

prevalent phenomenon that dedicated hardware has become available for rigid body

mechanics [156], and software libraries are becoming available to dedicate graphics

resources to physical simulation [77]. Simulation for games currently focuses

primarily on rigid body dynamics and particle systems (for fluid, smoke, explosions,

etc.), but will likely move toward deformable solid simulation as the standard for

realism increases.

Many medical simulation environments – both commercial ([182], [36], [87],

[183], [191], [213]) and academic [123], [33], [210], [209], [142]) – already depend on

modeling deformable solids. The vast majority of tasks performed during surgery

involve interaction with deformable bodies, so a medical simulator is expected to not

only represent deformation, but to model it with sufficient accuracy for effective

training. Force/deformation curves of virtual organs should correspond to their real

 66

counterparts, and deformation should vary realistically among patients, among tissue

types, and even within a tissue type.

Currently many of these simulators focus on canonical cases, whose creation

requires significant manual intervention by developers, technicians, or manufacturers.

As surgical simulation enters mainstream medical practice, the use of patient-specific

data in place of canonical cases is likely to become common, allowing a much broader

range of applications and training cases. This scenario prohibits the use of tedious

manual procedures for data preprocessing. Similarly, as games incorporate more

sophisticated simulation techniques, rapid preparation of deformable models will be

required to continue the current trend toward player-generated and custom content.

This paper addresses this need: automatic preparation of realistic deformable

models for medical simulation and computer games. We restrict our discussion to a

particular simulation method in the interest of focusing on automation of model

preparation (rather than simulation), but the techniques presented here can be

generalized to other models.

We assume that the user provides a surface model of the desired structure; this

is a reasonable assumption, as surface models are the standard object representation in

games and are easily derived from automatically-segmented medical images. We

further assume that the user provides constitutive properties describing the material

they are attempting to represent; this is also a reasonable assumption, as constitutive

properties for a wide variety of materials are available in engineering handbooks.

Constitutive properties for biological tissues can be measured experimentally ([32],

[168], [194]).

Section 5.2 discusses the generation of volumetric (tetrahedral) meshes from

surface meshes. Section 5.3 discusses the use of a finite element reference model to

calibrate an interactive simulation. Section 5.4 discusses simulation and rendering,

focusing on a geometric interpretation of the simulation technique presented in [199]

and a mesh skinning technique that is suitable for our deformation model. The

remainder of Section 5.1 discusses work related to each of these three topics.

 67

5.1.2 Related Work: Mesh generation

―Mesh generation‖ generally refers to the process of discretizing a space into

volumetric elements. The space is frequently defined by either an implicit or explicit

surface boundary, and the elements are generally explicit solid units, commonly

tetrahedra or hexahedra when the space is three-dimensional.

Ho-Le [80] provides a summary of core methods in mesh generation for finite

element analysis, and Zhang [217] provides a summary of more recent work in this

area. Si [181] describes a common, public-domain package for mesh generation,

specifically targeted toward finite element analysis applications. Recent work on

mesh generation employs physical simulation in the meshing process (e.g. [31]).

The work most closely related to the approach presented in Section 5.3 of this

paper is that of Mueller [137], which also focuses on generating approximate, non-

conformal meshes for interactive simulation.

5.1.3 Related Work: Deformation Calibration

Early work exploring the relationship between non-constitutive simulations (generally

mass-spring systems) and finite element analyses began with Deussen et al [51], who

optimize a 2D mass-spring system to behave like an analytically-deformed single 2D

constitutive element. Similarly, van Gelder [203] analytically derives spring constants

from constitutive properties for a 2D mass-spring system. This work also includes a

theoretical proof that a mass-spring system cannot exactly represent the deformation

properties of a constitutive finite element model.

While most work in this area has been oriented toward volumetric solid

deformation using simulation results as a ground truth, Bhat et al [23] use video of

moving cloth to calibrate simulation parameters for a cloth simulation. Similarly,

Etzmuss et al [55] extend the theoretical approach of van Gelder [203] to derive a

mass-spring system from a constitutive model of cloth.

Bianchi et al [24] demonstrate that a calibration procedure can enable a 2D

mass-spring system to recover the connectivity of another 2D mass-spring system;

deformation constants are held constant. Bianchi et al [25] later demonstrate the

 68

recovery of spring constants, and the 2D calibration of a mass-spring system to a finite

element reference model. They do not extend their calibration to 3D, and do not

provide a mechanism for handling the exponential growth in optimization complexity

associated with 3D objects and complex topologies. Choi et al [38] use a similar

approach to calibrate a homogeneous mass-spring system, and Mosegaard [135] uses a

similar optimization for simple models but takes dynamic behavior into account

during optimization.

5.1.4 Related Work: Mesh Skinning

Mesh skinning describes the process of animating the vertices of a rendered mesh to

correspond to the behavior of an underlying skeleton. This has become a very

common technique for rendering characters in games and video animation; the

skeleton often literally represents a character‘s skeleton and the rendered mesh

generally represents the character‘s skin. Skinning is easily implemented in graphics

hardware [144], making it suitable for a variety of simulation environments.

Recent work on mesh skinning has focused on correcting the inaccuracies that

result from naïve blending, as per [103], and on automatically associating vertex

movements with an implicit underlying skeleton [91] as a form of animation

compression. However, bones are generally defined and associated with vertices

manually by content developers, as part of the modeling/animation process.

5.2 Mesh Generation

This section discusses our approach to generating tetrahedral meshes from surface

meshes for interactive deformation.

5.2.1 Background

Previous approaches to generating tetrahedral meshes (e.g. [137], [181], [31], [217])

from surface meshes have generally focused on generating conformal meshes (meshes

whose bounding surface matches the target surface precisely) for high-precision finite

element simulation. Consequently, the resulting meshes are generally highly complex,

particularly near complex surface regions.

 69

Interactive simulation presents a different set of requirements and priorities for

mesh generation. Since the use of interactive simulation techniques comes with an

intrinsic loss in precision, some discrepancy between the target surface mesh and the

resulting volumetric mesh is generally acceptable. In particular, the computational

expense of increased tetrahedron count does not justify the benefits of a conformal

mesh. This is particularly true for applications in games, where physical plausibility

and interactivity take precedence over perfect accuracy. For most applications, the

surface used for interactive rendering is decoupled from the simulation mesh, so the

nonconformality of the mesh will not affect the rendered results (see Section 5.4).

Like finite element simulation, most interactive simulation techniques have

difficulties when tetrahedral aspect ratios approach zero. In other words, ―sliver‖ tets

are generally undesirable, since they are easily inverted and do not have well-defined

axes for volume restoration forces.

The behavior of interactive simulation techniques is often visibly affected by

topology, so a homogeneous material is generally most effectively simulated by a

mesh with homogeneous topological properties. Thus there is an intrinsic advantage

to regularity in deformable meshes.

Thus the goal of the technique presented here is to automatically generate

nonconformal, regular meshes with large tetrahedral aspect ratios. It is also desirable

for the process to proceed at nearly interactive rates for meshes of typical complexity,

so the process can easily be repeated following topology changes or plastic

deformation during interactive simulation.

5.2.2 Mesh Generation

Our mesh generation procedure begins with a surface mesh (Figure 29a), for which we

build an axis-aligned bounding box (AABB) hierarchy (Figure 29b).

 70

(a) (b)

(c) (d)

(a) (b)

(c) (d)

Figure 29. Stages of the mesh generation process: (a) initial surface mesh, (b) axis-

aligned bounding box hierarchy for rapid voxelization (c, with voxel centers in green),

and (d) splitting of voxels into tetrahedra.

The AABB tree is used to rapidly floodfill (voxelize) the surface (Figure 29c).

The floodfilling begins with a seed voxel, identified by stepping a short distance along

the inward-pointing surface normal of a mesh triangle. This voxel is considered to be

an internal voxel. Floodfilling sequentially pulls internal voxels from a queue. A ray

is cast from each known internal voxel to each of its neighbors; the AABB hierarchy is

used to determine whether this ray crosses the object boundary, with spatial coherence

exploited as per [132]. If the ray does not cross the surface, the neighbor is marked as

an internal voxel and is placed on the queue. If the ray does cross the surface, the

neighbor is marked as a border voxel and is not considered for further processing.

Floodfilling proceeds until the queue is empty.

The resolution of voxelization – which determines the resolution of the output

tet mesh – is user-specified. Since voxels are isotropic, the user need only specify the

voxel resolution of the mesh‘s longest axis, a simple precision metric that a user can

 71

intuitively relate to the target application. Voxelization is allowed to proceed one

voxel outside the surface; for interactive simulation techniques that include collision-

detection and penalty-based collision response, it is generally desirable to slightly

overestimate object volume at this stage.

Each resulting voxel (defined by its center point) is then used to create a cube

of eight vertices. Vertices are stored by position in a hash table; existing vertices can

thus be recalled (rather than re-created) when creating a voxel cube, allowing shared

vertices in the output mesh. Each resulting cube is then divided into five tetrahedra

(Figure 30), yielding the final tetrahedral mesh (Figure 29).

0

1

2

3

5

4

6

7

0, 3, 5, 64

0, 4, 5, 63

0, 2, 3, 62

3, 5, 6, 71

0, 1, 3, 50

NodesTet

0

1

2

3

5

4

6

7

0, 3, 5, 64

0, 4, 5, 63

0, 2, 3, 62

3, 5, 6, 71

0, 1, 3, 50

NodesTet

Figure 30. Splitting a cube (voxel) into five tetrahedra.

5.2.3 Implementation and Results

The mesh generation approach presented here was incorporated into the voxelizer

package, available online and discussed in more detail in [132]. The package is

written in C++ and uses CHAI [42] for visualization and collision detection (AABB

tree construction). Files are output in a format compatible with TetGen [181].

To evaluate the computational cost of our approach, and thus its suitability for

real-time re-meshing, we generated tetrahedral meshes for a variety of meshes (Figure

31) at a variety of resolutions on a 1.5GHz Pentium 4. Resolutions were specified as

 72

―long axis resolution‖, i.e. the number of tetrahedra along the output mesh‘s longest

axis (Section 5.2.2).

(a) (b)

(c) (d)

(a) (b)

(c) (d)

Figure 31. Meshes used for evaluating mesh generation. (a) Gear: 1000 triangles. (b)

Happy: 16000 triangles. (c) Dragon: 203,000 triangles (d) Bunny: 70,000 triangles.

Table 2 summarizes these results. Mesh generation time is almost precisely

linear in output tet count (Figure 33), and mesh generation time is below one second

for meshes up to approximately 250,000 tets. Mesh generation proceeds at graphically

interactive rates (>10Hz) for meshes up to approximately 20,000 tets. Current parallel

simulation techniques ([61], [195]) allow simulation of over 100,000 tets interactively;

mesh generation for meshes at this scale is not real-time (about 500ms), but would be

sufficiently fast – even at these extremely high resolutions – to allow nearly-

interactive background remeshing in cases of topology changes and large

deformations. Figure 32 shows mesh generation times as a function of the user-

specified precision variable: long axis mesh resolution.

 73

Input

mesh

Input mesh size

(triangles)

Long axis

resolution (tets)

Output mesh

size (tets)

Tetrahedralization

time (s)

bunny 70k 30 35840 0.153

bunny 70k 75 478140 1.98

bunny 70k 135 2645120 10.139

bunny 70k 165 4769080 18.287

gear 1k 30 20780 0.101

gear 1k 75 271350 1.132

gear 1k 135 1434065 5.789

gear 1k 165 2504240 9.961

happy 16k 30 10100 0.057

happy 16k 75 126610 0.562

happy 16k 135 662745 2.7

happy 16k 165 1178725 4.74

dragon 203k 30 12750 0.083

dragon 203k 75 158370 0.772

dragon 203k 135 820305 3.57

dragon 203k 165 1453270 6.042

Table 2. Tetrahedralization time for the meshes shown in Figure 31, at various output

mesh resolutions.

0 20 40 60 80 100 120 140 160 180
0

2

4

6

8

10

12

14

16

18

20

Long axis mesh resolution (tets)

C
o

m
p

u
ta

ti
o

n
 t

im
e
 (

s
)

bunny (70k tris)

gear (1k tris)

happy (16k tris)

dragon (203k tris)

 74

Figure 32. Mesh generation times at various output mesh resolutions. Long axis

resolution, rather than output tet count, is used as the dependent variable; this is an

intuitive metric for user-specified mesh precision.

0 1 2 3 4 5

x 10
6

0

2

4

6

8

10

12

14

16

18

20

Output mesh size (tetrahedra)

C
o

m
p

u
ta

ti
o

n
 t

im
e
 (

s
)

bunny (70k tris)

Figure 33. Mesh generation times at various output mesh resolutions.

A binary version of our mesh generation approach is publicly available at:

http://cs.stanford.edu/~dmorris/voxelizer

5.3 Calibration to Ground Truth Deformation

This section discusses the automated calibration of non-constitutive deformation

properties using known constitutive properties and a finite-element-based reference

deformation.

5.3.1 Background

Techniques for simulating deformable materials can be classified coarsely into two

categories: constitutive and non-constitutive models.

Approaches based on constitutive models (e.g. [142], [105], [20], [121], [90],

[15], [16]) generally use equations from physics to describe how a material will

behave in terms of physical constants that describe real materials – e.g. Poisson‘s

http://cs.stanford.edu/~dmorris/voxelizer

 75

coefficient, Young‘s modulus, etc. These constants can generally be looked up in an

engineering handbook or determined experimentally for a particular material. Many

methods in this category are variants on finite element analysis (e.g. [142], [105],

[20]), which uses known constitutive relationships between force and deformation to

predict how a material will deform. These methods are traditionally very accurate,

and are used for computing stresses and strains for critical applications in structural

mechanics, civil engineering, automotive engineering, etc. However, these methods

are generally associated with significant computational overhead, often requiring

solutions to large linear systems, and thus cannot generally be run at interactive rates.

When these approaches are adapted to run at interactive rates, they are generally

limited in the mesh resolutions they can process in real-time.

In contrast, many approaches to material deformation are non-constitutive, e.g.

[199], [133], [134], [61], [195]. Rather than using physical constants (e.g. elastic

moduli) to describe a material, such approaches describe objects in terms of constants

that are particular to the simulation technique employed. Many approaches in this

category are variants on the network of masses and springs, whose behavior is

governed by spring constants that can‘t be directly determined for real materials. In

general, these methods are thus not accurate in an absolute sense. However, many

approaches in this category can be simulated at interactive rates even for high-

resolution data, and these approaches often parallelize extremely well, offering further

potential speedup as parallel hardware becomes increasingly common.

In short, the decision to use one approach or the other for a particular

application is a tradeoff between realism and performance, and interactive simulations

are often constrained to use non-constitutive techniques.

For applications in entertainment or visualization, simulation based on hand-

calibrated constants may be adequate. But for high-precision applications, particularly

applications in virtual surgery, a deformation model is expected to behave like a

specific real material. It is often critical, for example, to teach absolute levels of force

that are necessary to achieve certain deformations, and it is often critical to

 76

differentiate among tissue types based on compliance. Thus roughly-calibrated

material properties are insufficient for medical applications.

Furthermore, traditional mass-spring systems are usually expressed in terms of

stiffnesses for each spring, so the only way to vary the behavior of a material is to vary

those stiffnesses. For any significant model, this translates into many more free

parameters than a content developer could reasonably calibrate by hand.

Even if sufficient manual labor is available to manually calibrate canonical

models, this calibration would generally be object-specific, as much of the

deformation properties of a mass-spring network are embedded in the topology and

geometry of the network [27]. Therefore calibrated spring constants cannot be directly

transferred among objects, even objects that are intended to represent the same

material.

The present work aims to run this calibration automatically, using the result of

a finite element analysis as a ground truth. While calibration results still cannot be

generalized across objects, the calibration runs with no manual intervention and can

thus be rapidly repeated for arbitrary sets of objects.

5.3.2 Homogeneous Calibration

The following are assumed as inputs for the calibration process:

 A known geometry for the object to be deformed, generated according to the

procedure outlined in Section 5.2.

 A known set of loads – defined as constant forces applied at one or more mesh

vertices – that are representative of the deformations that will be applied to the

object interactively. In practice, these loads are acquired using a haptic simulation

environment and an uncalibrated object. Note that a single ―load‖ may refer to

multiple forces applied to multiple (potentially disjoint) regions of the mesh.

 Constitutive elastic properties (Poisson‘s coefficient and Young‘s modulus) for the

material that is to be represented.

 77

The supplied constitutive properties are used to model the application of the specified

loads using an implicit finite element analysis, providing a ground truth deformation to

which non-constitutive results can be compared. This quasi-static analysis neglects

dynamic effects; extension to dynamics is an area for future work.

The same loads are then applied to the same geometry using a non-constitutive

simulation, and the simulation is allowed to come to steady-state (a configuration in

which elastic forces precisely negate the applied forces). For the implementation

presented in Section 5.3.3 we use the deformation model presented in [199], but for

this discussion we will treat the simulation technique as a black box with a set of

adjustable parameters.

There are, in most cases, large subsets of the parameter space that will not

yield stable deformations. In traditional mass-spring systems, for example,

inappropriately high constants result in instability and oscillation, while

inappropriately low constants result in structural collapse. In either case, local

variation in parameters cannot be reliably related to variation in deformation.

Optimization will proceed most rapidly if it begins with a baseline deformation that

can be used to quickly discard such regions in the parameter space. Therefore, before

beginning our optimization, we coarsely sample the parameter space for a fixed

number of simulations (generally 100) and begin our optimization with the optimal set

among these samples, as per [23] (our optimality metric follows). If none of our

samples yield a stable deformation, we randomly sample the space until a stable

deformation is obtained.

We then compute an error metric describing the accuracy of this parameter set

as the surface distance between the meshes resulting from constitutive and non-

constitutive deformation:

nvertices

ipip

e

nvertices

i

nonconstconst

L

2

1

)()(

)(

 78

…where eL(φ) is the error (inaccuracy) for a parameter set φ and load L, nvertices is

the number of vertices in our mesh, pconst(i) is the position of vertex i following

constitutive deformation, and pnonconst(i) is the position of vertex i following non-

constitutive deformation with parameter set φ. Note that the non-constitutive

deformation is computed once at the beginning of the optimization procedure and is

not repeated.

This error metric assumes a one-to-one correspondence between vertices in the

two meshes; in practice this is the case for the implementation presented in Section

5.3.3, but were this not the case, the lower-resolution mesh could be resampled at the

locations of the higher-resolution mesh‘s vertices. The deformed positions of the

resampled vertices could then be obtained by interpolating the deformed positions of

the neighboring vertices in the lower-resolution mesh after deformation (this is

analogous to interpolating displacements by free-form deformation [172]).

When multiple loads (to be applied separately) have been defined, we average

the resulting errors over those loads to define an accuracy metric for a parameter set:

nloads

L

LeE
1

)()(

…where E(φ) is the average error for the parameter set φ and nloads is the number of

separate loads to apply. In practice nloads is often 1, but we will continue to use the

more general E(φ) notation that allows for multiple loads.

The goal of our optimization is thus to find the parameter set φ that minimizes

E(φ):

)(minarg

E

…where Ф is our output parameter set, representing the best match to the supplied

constitutive parameters for the specified deformations, and φ is bounded by user-

specified upper- and lower-bounds, which generally do not vary from problem to

problem.

 79

We solve this constrained minimization problem through simulated annealing

[100] (SA), a stochastic optimization technique that follows local gradients in a

problem space to arrive at minima of the energy function, but periodically jumps

against the gradient to avoid local minima. In particular, we use the adaptive

simulated annealing [88] (ASA) variant on SA, which automatically adjusts the

annealing parameters over time to converge more quickly than traditional SA.

For very simple linear problems, such as identifying the optimal spring

constant for a single tetrahedron being stretched in a single direction, we have also

employed gradient descent, which is extremely efficient, but complex error landscapes

prevent this approach for significant problems. We will discuss further applications

for simpler approaches in Section 5.5.

At the completion of the simulated annealing procedure, we will have a non-

constitutive parameter set Ф that optimally matches our non-constitutive deformation

to our constitutive deformation. The annealing procedure may take a significant

amount of time to complete, but it proceeds with no manual intervention and can thus

be efficiently used to prepare numerous deformable models.

5.3.3 Implementation

We have implemented the described calibration process using an implicit solver for

our constitutive deformation and the method of [199] for our non-constitutive

deformation. The finite element package Abaqus [1] is used for reference

deformations, and our interactive deformation model is implemented in C++ using

CHAI [42] for visualization. Deformation results from both packages are collected in

Matlab [111], and optimization is performed with the ASA package [89] through the

ASAmin wrapper [166]. Gradients are estimated by finite differencing.

The selected deformation model is described in more detail in Section 5.4; the

key point for this discussion is that nodal forces are computed based on four

deformation parameters: a volume preservation constant (defined for each

tetrahedron), an area preservation constant (defined for each face), a length

preservation constant (defined for each edge), and a viscous damping force. These

four values are the free parameters for our optimization. For the results presented in

 80

Section 5.3.4, they are taken to be homogeneous throughout the material.

Nonhomogeneity will be introduced in Section 5.3.5. In practice, the viscous damping

force is always uniform and is allowed to vary only coarsely; once it is calibrated to a

reasonable value for a problem, variations should affect the time required to reach

steady-state but not the final deformation.

Since we use a quasi-static, implicit simulation for constitutive deformation,

we require steady-state results from our non-constitutive simulation as well. A

simulation is determined to be at steady-state when the maximum and mean vertex

velocities and accelerations are below threshold values for a predetermined amount of

time. These values are defined manually but do not vary from problem to problem.

Simulations that do not reach steady-state within a specified interval are assigned an

error of DBL_MAX.

5.3.4 Results: Homogeneous Calibration

We will demonstrate the effectiveness of this approach through a case study, using the

problem depicted in Figure 34. Here the base of the gear model is fixed in place

(nodes indicated in blue), and opposing forces are applied to the ―front‖ of the gear.

This load will tend to ―twist‖ the gear around its vertical axis. The simulated object is

defined to be approximately 2 meters wide, with 50 pounds of force applied at each of

the two load application points. The constitutive simulation uses a Young‘s modulus

of 100kPa and a Poisson‘s coefficient of 0.45 .

 81

Figure 34. The deformation problem analyzed in section 3.4. Nodes highlighted in blue

are fixed in place; green arrows define the applied load.

Figure 35 graphically displays the results of the calibration procedure for this

problem. The undeformed mesh is shown in Figure 35a. For comparison, the result of

a non-constitutive deformation using constants selected through several minutes of

manual calibration is presented in Figure 35c. Note that this is not an unreasonable or

inconsistent response to the applied loads. Figure 35b and Figure 35d show the results

of constitutive deformation and calibrated non-constitutive deformation, respectively.

The two models are nearly identical, indicating a successful calibration. Using the

error metric described in section 5.3.2, the error was reduced from 0.9 (uncalibrated)

to 0.08 (calibrated).

(a) (b)

(c) (d)

(a) (b)

(c) (d)

Figure 35. Results after calibration for the problem shown in Figure 34. Each subfigure

shows a “top view” of the model introduced in Figure 34. (a) Undeformed model. (b)

Ground truth deformation (resulting from finite element analysis). (c) Baseline non-

constitutive deformation (hand-selected constants). (d) Calibrated non-constitutive

deformation. (b) and (d) are nearly identical, indicating successful calibration

 82

Figure 36 looks more closely at the optimization trajectory during this

calibration. The optimization proceeds from left to right, with each point representing

a simulation pass. Higher values on the y-axis indicate less accurate deformation.

The highlighted area indicates the optimization‘s efficient use of the error gradient for

rapid descent from the initial error result. This indicates that a bounded optimization,

for which the user specified an acceptable error bound, rather than waiting for a global

optimum, would proceed extremely rapidly. This is likely to be the most practical

usage model for this approach.

Simulation pass

R
M

S
 v

e
rt

e
x
 e

rr
o
r

Simulation pass

R
M

S
 v

e
rt

e
x
 e

rr
o
r

Figure 36. Optimization trajectory for the calibration shown in Figure 35. Each error

value is shown in blue; the green line represents the lower envelope of the blue line, or in

other words the best result found so far at any point in the optimization process. The

region highlighted in red indicates the rapid initial gradient descent. The y-axis is

compressed to improve visibility; the initial error is 0.9, and the maximum error

(assigned to non-terminating simulations) is DBL_MAX.

The ―jittery‖ appearance of the error plot, with numerous simulations resulting

in very large errors, results from the annealing process‘s tendency to occasionally

jump from a ―good‖ region of the parameter space to an unexplored region of the

 83

parameter space. These jumps often result in unstable simulations, which are assigned

a high error.

Having obtained calibrated constants for this problem, we would like to

demonstrate that these constants translate to another load applied to the same object;

i.e. we‘d like to confirm that our results are not overfit to the particular load on which

the system was calibrated.

Figure 37 demonstrates a new load applied to the same model, which will

produce an entirely different deformation and will stress the mesh along a different

axis. Figure 38 shows the result of transferring the calibration to this problem. Again

we present the undeformed mesh and a ―baseline‖ mesh (constants selected quickly by

hand) for comparison. We again see an excellent correlation between Figure 38b and

Figure 38d, indicating a successful calibration transfer. The RMS vertex error was

reduced from 1.0 to 0.1 in this case. The resulting error was thus only slightly higher

than the residual self-calibration error represented in Figure 35 and Figure 36.

Figure 37. Calibration verification problem. Nodes highlighted in blue are fixed in

place; green arrows define the applied load.

 84

(a) (b)

(c) (d)

(a) (b)

(c) (d)

Figure 38. Calibration verification results. (a) Undeformed model. (b) Ground truth

deformation (resulting from finite element analysis). (c) Baseline non-constitutive

deformation (hand-selected constants). (d) Calibrated non-constitutive deformation,

using the results obtained from the problem presented in Figure 34. (b) and (d) are

nearly identical, indicating successful calibration transfer to the new problem.

5.3.5 Nonhomogeneous Calibration

The results presented so far were based on homogeneous materials, i.e. the four

calibrated constants were uniform throughout the object. There are, however, two

motivations for allowing inhomogeneous deformation constants.

The first is to allow calibration to inhomogeneous reference objects. An object

whose material properties vary in space clearly cannot be represented with

homogeneous deformation parameters. This is particularly relevant for applications in

virtual surgery, where tissues may have material properties that vary according to

microanatomy or pathology, or may represent compound materials such as muscle

coupled to bone.

 85

A second motivation for allowing inhomogeneous deformation constants is to

compensate for deformation properties that are artificially introduced by the geometry

and topology of the simulation mesh. van Gelder has shown, for the two-dimensional

case, that uniform stiffness properties fail to simulate a uniform object accurately

[203]. It is also known that mesh geometry and topology can introduce undesired

deformation properties into mass-spring simulations [27]. We would thus like to

allow constants to vary within our calibrated mesh, even when it is intended to

represent a homogeneous object.

Previous approaches to nonhomogeneous deformation calibration (e.g. [25],

[135]) have allowed stiffness constants to vary at each node, which links optimization

complexity directly to mesh resolution and presents an enormous optimization

landscape.

We present a novel approach to nonhomogeneous parameter optimization,

which decouples optimization complexity from simulation complexity and mesh

resolution. Specifically, rather than presenting the per-node deformation parameters

directly to the optimizer, we allow the optimizer to manipulate deformation

parameters defined on a fixed grid; those parameters are then interpolated by trilinear

interpolation to each node before every simulation pass. This imposes some

continuity constraints on the resulting parameter set (nearby vertices will have similar

parameter values), but can greatly speed up the optimization process, making possible

the calibration of large meshes that would be prohibitively expensive to optimize per

node.

Figure 39 shows an example of the decoupling of the optimization and

simulation meshes. The optimization mesh can be arbitrarily simplified to allow, for

example, variation of parameters along only one axis of the object (using a k 1 1

optimization grid).

 86

Figure 39. Decoupled simulation and optimization meshes. The optimizer adjusts

constants on the larger grid (blue nodes), which are interpolated to the simulation mesh

(red) before each simulation pass.

As a preprocessing step, each simulation vertex is associated with a set of

weights defining the optimization nodes that affect its parameter set. Specifically, we

assign weights to the eight optimization nodes that form a cube around each

simulation vertex. We will refer to the coordinates of those nodes as

 zzyyxx ,,,,, , representing the upper and lower bounds of this vertex‘s cell

in the optimization grid. The coordinates of the eight nodes of this cell are thus:

 zyx

zyx

zyx

zyx

zyx

zyx

zyx

zyx

,,7

,,6

,,5

,,4

,,3

,,2

,,1

,,0

We then define the cell-relative position of vertex v along each axis as:

 87

)zz)/(z(v.zv

)yy)/(y(v.yv

)xx)/(x(v.xv

zrel

yrel

xrel

And the trilinear interpolation weights for this vertex associated with each

optimization node are:

))()((7

)1)()((6

))(1)((5

)1)(1)((4

))()(1(3

)1)()(1(2

))(1)(1(1

)1)(1)(1(0

zrelyrelxrel

zrelyrelxrel

zrelyrelxrel

zrelyrelxrel

zrelyrelxrel

zrelyrelxrel

zrelyrelxrel

zrelyrelxrel

vvv

vvv

vvv

vvv

vvv

vvv

vvv

vvv

Calibration nodes that do not affect parameter values at any vertex (for example, the

upper-left calibration node in Figure 39) are discarded and are not used for

optimization. In practice, weights are assembled into a (highly sparse) matrix of size

[number of calibration_nodes] [number of vertices] that can be multiplied by a

vector of values of length [number of calibration nodes] for each parameter to quickly

compute the parameter value at each vertex by matrix-vector multiplication.

Parameter values defined on the optimization grid cannot be used directly for

simulation, so to compute a parameter value pv for a particular simulation vertex v

before a simulation pass, we compute the weighted sum:

i

i

iv pwp

7

0

…where wi is the weight associated with node i, as defined above (node numbering

here is within a cell, not over the entire grid) and pi is the parameter value at node i

(supplied by the optimizer).

 88

In summary, we learn deformation parameters on a fixed grid, which is

generally more sparse than the simulation mesh, and interpolate values to simulation

nodes at each evaluation of the error metric. This decouples optimization complexity

from mesh complexity.

5.3.6 Results: Nonhomogeneous Calibration

We suggested in Section 5.3.5 that nonhomogeneous calibration should improve

calibration results even for homogeneous objects. We will thus revisit the problems

presented in Section 5.3.4 and assess the benefit of nonhomogeneous calibration.

Figure 40 shows the error reduction for ―self-calibration‖ (the residual error at

the completion of optimization) for the two ―gear‖ problems introduced in Section

5.3.5. A significant error reduction is observed in both cases, indicating that the

optimizer is able to use the additional degrees of freedom provided through

nonhomogeneity. In both cases, a grid resolution of 5 5 3 was used, where the

shortest axis of the gear (the vertical axis in Figure 35a) was assigned to the shortest

axis (3 nodes) of the calibration grid.

0

0.2

0.4

0.6

0.8

1

Twist Pushover

E
rr

o
r

(n
o

rm
a

li
z
e

d
)

nonhomogeneous

homogeneous

R
e

s
id

u
a

l
E

rr
o

r
(n

o
rm

a
li

z
e

d
)

0

0.2

0.4

0.6

0.8

1

Twist Pushover

E
rr

o
r

(n
o

rm
a

li
z
e

d
)

nonhomogeneous

homogeneous

R
e

s
id

u
a

l
E

rr
o

r
(n

o
rm

a
li

z
e

d
)

Figure 40. Improvement in self-calibration due to nonhomgeneous calibration. For each

problem, the residual calibration errors following homogeneous and nonhomogeneous

calibration are indicated in blue and purple, respectively.

 89

Having established the benefit of nonhomogeneous calibration for

homogeneous objects, we would like to demonstrate the ability of our calibration

technique to learn variations in material properties within nonhomogeneous objects.

Figure 41 shows the results of a nonuniform calibration for a cube that was

modeled with a uniform Poisson‘s coefficient (0.499) but included two regions with

different Young‘s moduli (50kPa and 1000kPa) (Figure 41a). An applied load (Figure

41b) resulted in virtually no displacement in the ―hard‖ (bottom) portion of the object

according to finite element analysis (Figure 41c). This reference deformation was

used to learn constants on an interpolation grid, which converged to the results shown

in Figure 41f (values are interpolated to vertices in the figure). Figure 41f shows the

distribution of kd; ka and kv showed similar distributions, and the damping constant

was treated as uniform for this calibration. The resulting non-constitutive deformation

(Figure 41e) can be contrasted with the optimal result obtained using homogeneous

values for all four constants (Figure 41d).

 90

E = 1000kPa (hard)

E = 50kPa (soft)

(a) (b)

(c) (d)

(e)

kd = 40298

kd = 273

(f)

E = 1000kPa (hard)

E = 50kPa (soft)

E = 1000kPa (hard)

E = 50kPa (soft)

(a) (b)

(c) (d)

(e)

kd = 40298

kd = 273

(f)

Figure 41. Results following a nonhomogeneous calibration. The object was modeled

with a nonuniform Young’s modulus (a), and subjected to the load indicated in (b), with

blue highlights indicating zero-displacement constraints. (c) The resulting deformation

according to finite element analysis (note that the load is absorbed almost entirely in the

“soft” region). (d) The resulting deformation according to a calibrated, non-constitutive

model with homogeneous parameter values. (e) The resulting deformation according to

a calibrated, non-constitutive model with nonhomogeneous parameter values; note that

the load is correctly absorbed in the top part of the object. (f) The distribution of kd

values after calibration.

 91

5.4 Rendering and Simulation

We have now discussed our approaches to preparing and calibrating tetrahedral

meshes and deformation parameters for interactive simulation. This section reviews

our selected simulation approach, a reformulation of the method presented in [199])

and discusses our approach to mesh skinning during simulation.

5.4.1 Simulation

The deformation model presented in [199] addresses important limitations in

traditional mass-spring systems. In particular, local volume-preservation and area-

preservation forces, computed for each tetrahedron and each tetrahedral face,

respectively, complement traditional length-preservation forces computed along each

tetrahedral edge. This model enforces local volume conservation, which

approximately constrains global volume, and allows a much wider variety of material

behaviors to be expressed than a traditional mass-spring system.

The original presentation of this approach [199] presents these constraint

forces as analytic derivatives of energy functions. We will present equivalent

geometric interpretations; our implementation is based on these geometric

representations of the constraint forces.

5.4.1.1 Distance Preservation

The energy function ED associated with the distance-preservation force between two

connected vertices vi and vj is [199]:

2

0

0

2

1
),(

D

Dvv
kvvE

ij

djiD

…where D0 is the rest length of this edge (computed in preprocessing) and kd is the

distance-preservation constant associated with this edge.

The force applied to vertex vi to minimize this energy is the traditional spring

force:

 92

ij

ij

ijdiD
vv

vv
DvvkvF 0)(

Intuitively, energy is minimized by shortening or lengthening the spring to its

rest length, so we apply a force toward the opposing vertex, whose magnitude depends

on the edge‘s deviation from rest length (Figure 42a).

vi vj

vi

vj vk

vi

vj vk

vl

(a)

(b)

(c)

vi vjvi vj

vi

vj vk

vi

vj vk

vi

vj vk

vl

vi

vj vk

vl

(a)

(b)

(c)

Figure 42. Geometric representations of energy derivatives with respect to vertex vi, i.e.

the direction in which each force should be applied to vertex vi. (a) Distance

preservation. (b) Area preservation. (c) Volume preservation. The double-headed

arrow indicates force direction in each case.

In practice, edge lengths are computed before any forces are calculated, so they

can be accessed by each vertex without recomputation.

5.4.1.2 Area Preservation

The energy function EA associated with the area-preservation force for the triangle

consisting of vertices vi, vj, and vk is [199]:

 93

2

0

0)()(
2

1

2

1
),,(

A

Avvvv

kvvvE
ikij

akjiA

…where A0 is the rest area of this triangle (computed in preprocessing) and ka is the

area-preservation constant associated with this triangle.

To understand the force we should apply to vertex vi to minimize this energy,

we will view this triangle with the edge (vj,vk) on the horizontal axis (Figure 42b).

The area of this triangle is equal to ½ times its baseline (|vk – vj|) times its height.

Since the baseline of the triangle cannot be affected by moving vertex vi, the gradient

of the triangle area in terms of the position of vi is clearly along the vertical axis

(maximally affecting the height of the triangle). We thus compute this perpendicular

explicitly to find the direction of the area-preservation force to apply to vertex vi:

)(

)(

)(

)(
)(

)(

i

i

iA

iA
iA

jkjk

jijk

jkjii

vntareagradie

vntareagradie

vF

vF
vforcedir

vvvv

vvvv
vvvvvntareagradie

Here we have just decomposed the vector (vi – vj) into components parallel to and

perpendicular to (vk – vj) and discarded the parallel component, then normalized the

result (areagradient) to get our force direction.

The magnitude of this force should be proportional to the difference between

the current and rest areas of the triangle. We compute the area as half the cross-

product of the edges, i.e.:

0)()(

2

1
)(Avvvvvforcemag ijikiA

…where A0 is the rest area of this triangle, computed in preprocessing.

And we scale the final force by the area-preservation constant ka associated

with this triangle:

)()()(iAiAaiA vforcedirvforcemagkvF

 94

In practice, triangle areas are computed before any forces are calculated, so they can

be accessed by each vertex without recomputation (area computation also yields

triangle normals, which are used for computing volume-preservation forces).

5.4.1.3 Volume Preservation

The energy function EV associated with the volume-preservation force for the

tetrahedron consisting of vertices vi, vj, vk, and vl is [199]:

2

0

0
6

1

2

1
),,,(

V

Vvvvvvv

kvvvvE
ilikij

vlkjiV

…where V0 is the rest volume of this tetrahedron (computed in preprocessing) and kv

is the volume-preservation constant associated with this tetrahedron.

To understand the force we should apply to vertex vi to minimize this energy,

we will view this tetrahedron with the face (vj,vk,vl) on the horizontal plane (Figure

42c). The volume of this tetrahedron is equal to 1/3 times its base area (½ ((vl – vj)

(vk – vj))) times its height. Since the base area of the tetrahedron cannot be affected

by moving vertex vi, the gradient of the tetrahedron volume in terms of the position of

vi is clearly along the vertical axis (maximally affecting the height of the tetrahedron).

We thus compute this perpendicular (the normal to the triangle (vj,vk,vl)) explicitly to

find the direction of the volume-preservation force to apply to vertex vi:

)(

)(

)(

)(
)(

)(

i

i

iv

iv
iv

jljki

vientvolumegrad

vientvolumegrad

vF

vF
vforcedir

vvvvvientvolumegrad

Here we have just computed a vector normal to the triangle (vj,vk,vl) (volumegradient)

and normalized the result.

The magnitude of this force should be proportional to the difference between

the current and rest volumes of the tetrahedron. We compute the volume of the

tetrahedron and subtract the rest volume:

 95

0)()(

6

1
)(Vvvvvvvvforcemag ilikijiV

…where V0 is the rest area of this triangle, computed in preprocessing.

And we scale the final force by the volume-preservation constant kv associated

with this tetrahedron:

)()()(ivivviV vforcedirvforcemagkvF

In practice, tetrahedral volumes are computed before any forces are calculated, so they

can be accessed by each vertex without recomputation.

As is described in [199], these forces are accumulated for each vertex and

integrated explicitly using Verlet integration. A viscous damping force is also applied

to each vertex according to a fourth material constant kdamp.

5.4.2 Mesh Skinning

The tetrahedral mesh used for simulation will generally present a lower-resolution

surface than the original mesh; rendering this surface directly significantly limits

rendering quality (compare Figure 43a to Figure 43b). It is thus desirable to decouple

the rendering and simulation meshes by ―skinning‖ a rendering mesh onto a

simulation mesh (Figure 43c).

 96

(a)

(b)

(c)

(a)

(b)

(c)

Figure 43. Skinning a rendering mesh on a simulation mesh. (a) Original mesh, used for

interactive rendering. (b) Tetrahedral mesh, used for interactive simulation. (c)

Rendering mesh skinned on simulation mesh (with cutaway view).

This type of mesh skinning is common for applications that have a low-

resolution rigid skeleton for animation and wish to deform a rendering mesh to reflect

the movements of the underlying bones, an operation that can be performed on

commodity graphics hardware [144]. However, such approaches assume a low-

degree-of-freedom underlying skeleton and are thus not suitable for skinning complex

meshes. Furthermore, mesh skinning usually involves manual assignment of vertices

to one or more bones, which is not practical when the set of independently deforming

components is very large. In other words, manually assigning vertices to be controlled

by specific tetrahedra would be prohibitively time-consuming.

 97

We thus present an automatic mechanism for skinning a rendering mesh onto a

simulation mesh. Our approach is similar to free-form deformation [172], which

determines the movement of vertices in a deforming space defined by a grid of control

points. In our case, the physically-based deformation of the tetrahedral mesh defines a

deforming space, and the vertices of the rendering mesh are translated accordingly.

Specifically, we perform a preprocessing step that begins with defining a ―vertex-

space‖ coordinate frame for each vertex vs on the surface of the simulation mesh. We

assume that surface vertices in the simulation mesh are tagged as such during the mesh

generation process (Section 5.2). The vertex-space coordinate frame Fvs, with origin

at vs, is defined by the three reference vectors Fx, Fy, and Fz, which are created as

follows and are orthogonal by construct (Figure 44):

 Fx: the surface normal at vs. Surface normals are computed before and during

simulation by averaging the face normals of all triangles that contain vs.

 Fy: The component of first ―surface edge‖ connected to vs that is perpendicular to

the normal at vs. A ―surface edge‖ is defined as an edge that connects to another

vertex that is on the surface of the mesh. This component is computed as follows:

 NNvvvvF soppositesoppositey

…where vs is the vertex at which we‘re defining a frame, vopposite is the simulation

vertex at the other side of the selected surface edge, and N is the unit normal

vector at Vs. Fy approximates a local surface tangent vector.

 Fz: The cross-product of Fx and Fy.

 98

vs

vopposite

F
x

=
 s

u
rfa

c
e
 n

o
rm

a
l a

t v
s

surface edge

Fy = surface edge projected

perpendicular to normal

Fz = Fx Fy

vs

vopposite

F
x

=
 s

u
rfa

c
e
 n

o
rm

a
l a

t v
s

surface edge

Fy = surface edge projected

perpendicular to normal

Fz = Fx Fy

vs

vopposite

F
x

=
 s

u
rfa

c
e
 n

o
rm

a
l a

t v
s

surface edge

Fy = surface edge projected

perpendicular to normal

Fz = Fx Fy

Figure 44. Vertex-space coordinate frame definition. The triangles shown in gray, and

their edges, are not used explicitly for defining this vertex’s coordinate frame, but will

influence the frame through their influence on the surface normal.

Fx, Fy, and Fz are each normalized to yield an orthonormal basis. Note that in

practice, coordinate frames are not defined until vertices are used in subsequent steps,

so that coordinate frames are not computed for vertices that are not used for skinning.

We have presented coordinate-frame definition first for clarity.

After defining coordinate frames, we place all simulation vertices on the

surface of the simulation mesh in a kd-tree [19].

For each vertex on the rendering mesh, we then find the nearest nneighbors

vertices on the surface of the simulation mesh. Higher values for nneighbors result in

more expensive rendering but more accurate rendering mesh deformation. In practice

we generally set nneighbors = 5.

For each vertex vr on the rendering mesh, and each of its nearby vertices vs on

the simulation mesh, we then compute the world-frame offset of vr relative to vs, and

rotate it into the coordinate frame Fvs defined at vs:

 99

 worldvsrvertex

zzy

yyy

xxx

v

srsrworld

offsetRvvoffset

zFyFxF

zFyFxF

zFyFxF

R

vvvvoffset

s

s

),(

...

...

...

),(

…where Fx, Fy, and Fz are the components of Fvs, as computed above. We store

offsetvertex(vr,vs) for each of the nneighbors vs‘s associated with vr. We also compute,

for each offsetvertex(vs,vr), a weighting factor defined by the distance between vs and vr

(closer vertices should have more influence over vr). The weighting factor for a

particular (vr,vs) is computed as:

nneighbors

i
sr

sr

sr

vv

vv
vvw

i

1
2

2

1

1

),(

…where the denominator here is a normalization factor, ensuring that the nneighbors

weights add up to 1.

The indices of all weighted vertices, the weight values, and the offsetvertex

values are stored for each rendering vertex vr.

During each frame of interactive rendering, for each vertex vr, we look up the

indices and deformed positions of each weighted vertex vs. Then to find the position

at which vr should be rendered, we recompute each coordinate frame Fvs exactly as

described above (including normalization) using the deformed position of vs, yielding

new Fx, Fy, and Fz vectors (which we‘ll refer to as Fx‘, Fy‘, and Fz‘). The new position

for vr based on a simulation vertex vs is then computed as:

zoffsetFyoffsetFxoffsetFvvp vertexzvertexyvertexxsr ...),(

 100

The coordinate frame is based on the local surface normal and the local tangent

vector (the chosen surface edge), and thus rotates with the space surrounding vs.

The final position for vr is the weighted average of the position ―votes‖ from

each vs:

nneighbors

i

srsrr ii
vvpvvwvp

1

),(),()(

5.4.3 Implementation and Results

The proposed simulation approach is a reformulation of [199], so we refer to their

results for detailed deformation results. The proposed skinning approach was

implemented using CHAI [42] for visualization and the ANN library [136] for kd-tree

searching. With N=5 and a the simulation and rendering meshes shown in Figure 15

(50,000 rendered faces and 13,000 simulated tetrahedra), simulation proceeds at

200fps, with rendering taking place every 10 simulation frames (20fps).

Skinning results are best communicated by video, so we have made a video of

our skinning approach, applied during interactive deformation, available at:

http://cs.stanford.edu/~dmorris/video/dragon_deforming.avi

5.5 Conclusion and Future Work

We have presented an automated pipeline for interactively deforming an object

originally defined as a surface mesh. Pipeline stages included mesh generation,

calibration to a constitutive model using simulated annealing, and

simulation/rendering.

5.5.1 Future Work: Mesh Generation

Future work on mesh generation will focus on generating nonuniform meshes that

provide more resolution in more detailed regions of the surface model; the AABB

hierarchy that we already create during voxelization provides a multiresolution

http://cs.stanford.edu/~dmorris/video/dragon_deforming.avi

 101

representation of the object that translates naturally into a voxel array. Calibration

(Section 5.3) will compensate for simulation artifacts resulting from nonuniform mesh

resolution. Also, simulations that involve topology changes (cuts and fractures) and

large deformations may benefit from dynamic background re-meshing, another area

for future research.

5.5.2 Future Work: Calibration

Our calibration procedure is currently naïve to the deformation model and treats each

error function evaluation as a black box. Calibration would be greatly sped up by

automatically and dynamically generating loads that probe sensitive, high-resolution,

or user-highlighted regions of the mesh. Also, error gradients are currently estimated

by finite differencing; more sophisticated approaches would adjust constants more

efficiently using ad hoc heuristics that predict the effects of parameter changes (for

example, higher stiffness constants are likely to reduce overall deformation).

Additionally, a more sophisticated error metric would penalize shape

deformation but allow rigid body transformations; the current per-vertex-distance

metric penalizes all errors equally. The calibration could also derive a more accurate

seed point for optimization by using simple, canonical models (for example,

homogeneous cubes or single tetrahedra) to obtain approximate canonical values for

deformation constants representing particular material properties.

Non-geometric error metrics that incorporate stress or surface tension would

also improve the applicability of our approach to applications that require force

information, e.g. simulations incorporating haptics or fracture/cut modeling.

Another application of the presented approach is topology optimization. The

ability to find optimal constants for a given topology can be generalized to iteratively

adjust topology, to minimize mesh size and simulation complexity while still

satisfying a given error bound.

We would also like to generalize our calibration approach to more complex

deformation models, particularly incorporating dynamics, nonlinear stress/strain

relationships, plasticity, and topology changes.

 102

5.5.3 Future Work: Parallelization

Finally, all of the approaches presented in this paper lend themselves extremely well

to parallelization, and are expected to benefit from parallel implementations.

Voxelization can be parallelized across regions at a high level, or across AABB nodes

at a finer level. A custom annealing procedure could make use of multiple,

simultaneous samples in the parameter space, and would be further optimized by a

parallelized version of the simulation itself, as per [61]. The skinning approach

presented in Section 5.4 is particularly well-suited to parallel implementation on

graphics hardware, especially when using a simulation technique such as [61], [195],

[133], or [134], which place vertex positions in a GPU-resident render target that can

be accessed from a vertex shader used to transform the vertices of the rendering mesh.

5.5.4 Supplemental Material

The mesh generation approach presented in Section 5.2 is available in binary form at:

http://cs.stanford.edu/~dmorris/voxelizer

A video of our mesh skinning approach is available at:

http://cs.stanford.edu/~dmorris/video/dragon_deforming.avi

The ―dragon‖, ―bunny‖, and ―happy‖ models were obtained from the Stanford 3D

Scanning Repository [82]. The ―gear‖ model was obtained from the TetGen examples

page [83].

http://cs.stanford.edu/~dmorris/voxelizer
http://cs.stanford.edu/~dmorris/video/dragon_deforming.avi

 103

6. Algorithms and Data Structures for Haptic

Rendering: Curve Constraints, Distance Maps,

and Data Logging

This section presents three algorithms that were developed in the course of building

the architecture used for Sections 3, 4, and 5. Haptic curve constraints (Section 6.2)

are a natural extension of the haptic guidance techniques presented and evaluated in

Section 4; future experiments will involve repeating the work presented in Section 4

under this sort of constraint. Distance fields were experimented with as a ―fail-safe‖

(to handle excessive penetration depths) for the haptic force computation techniques

presented in Section 3, and the distance-field generation mechanism presented in

Section 6.3 fits into the voxelization architecture presented in Section 5. The data

logging technique described in Section 6.4 was critical to the experiments presented in

Section 3 and Section 4, both of which required high-bandwidth data logging on a

high-priority haptic thread.

 The algorithmic subsections in this section are presented largely as

pseudocode, intended to allow a reader to quickly implement the described techniques.

A C++ implementation of our data-logging system is also available online and is

linked from the end of Section 6.4; binary versions of the approaches presented in

Sections 6.2 and 6.3 are available online and are linked from their respective sections.

 The work presented here was published as [132].

 104

In this section, we describe three novel data processing techniques used for haptic

rendering and simulation:

 We present an approach to constraining a haptic device to travel along a discretely-

sampled curve.

 We present an approach to generating distance maps from surface meshes using

axis-aligned bounding box (AABB) trees. Our method exploits spatial coherence

among neighboring points.

 We present a data structure that allows thread-safe, lock-free streaming of data

from a high-priority haptic rendering thread to a lower-priority data-logging

thread.

We provide performance metrics and example applications for each of these

techniques. C++-style pseudocode is provided wherever possible and is used as the

basis for presenting our approaches. Links to actual implementations are also

provided for each section.

6.1 Introduction

Applications incorporating haptic feedback are subject to significant performance

constraints; it is generally accepted that an application needs to sustain a 1kHz haptic

update rate before sampling effects become perceptible.

This stringent computation-time limitation requires careful consideration of the

design and implementation of preprocessing, rendering, and data streaming

techniques. In this section, we present three techniques for optimized haptic data

processing, each in an individual subsection. Section 6.2 will discuss the

implementation of a haptic curve constraint, or ―virtual fixture‖, using kd-trees.

Section 6.3 will discuss the rapid (offline) generation of exact signed distance fields

for surface meshes. Section 6.4 will discuss a threaded data structure for lock-free

 105

streaming of data from a high-priority haptic rendering thread to a lower-priority disk-

interaction thread.

6.2 Haptic Curve Constraints

6.2.1 Background

Haptic devices generally provide a user with three or six degrees of freedom. Haptic

feedback, however, offers the possibility of dynamically reducing the effective

degrees of freedom available within the device‘s workspace via virtual constraints.

Non-penetration constraints associated with surfaces are extremely common

and are used in nearly every haptic simulation involving interaction with rigid objects,

but other types of constraints have been applied using haptic devices as well. Abbott

et al [2] propose ―virtual fixtures‖ to assist in dexterous manipulation; the goal is to

reduce the degrees of freedom involved in a complex task and/or to restrict a device‘s

motion to a ―safe‖ portion of the workspace. This may be particularly suitable for

robotic surgery applications in which an actuated master can assist the surgeon by

restricting the movement of the slave. The authors discuss multiple types of fixtures,

including a ―guidance virtual fixture‖ (GVF), which is a constraint associated with a

3D curve. Garroway and Hayward [60] constrain the user to an analytic curve to

assist in editing a spatial trajectory.

In both of these cases, it is assumed that the closest point on the curve to the

current haptic probe position and/or the distance to that point are readily available,

either by analytic computation or by explicitly tracking the progress of the haptic

probe along the curve.

6.2.2 Discretized Curve Constraints

For some applications, particularly those where constraints can be dynamically added

and removed, it may be necessary to constrain a user to a curve beginning at an

arbitrary starting point, or to recover when the constraint has been significantly

violated. It is thus necessary to rapidly find the closest point on a curve to the current

haptic probe position.

 106

In addition, analytic representations are not always available for curves; curves

are most generally represented as discretely-sampled, ordered point sets rather than

analytic functions. This is particularly useful, for example, for haptic training

applications (e.g. [211], [58], [129]), in which one might use previously-recorded

trajectories as teaching examples.

We thus provide a rapid method for finding the closest point on a discretely-

sampled curve to a current probe position. We also present an approach to tracking

the constraint position on a curve when the haptic device may deviate from the

constraint and approach other points on the curve to which it should not become

constrained. Tying the haptic device to this constraint position by a virtual spring will

provide a general-purpose curve constraint.

A curve is assumed to be represented as a series of N points, each of which

stores its 3-dimensional position, an index into a linked-list or flat array that stores the

N points in order, and its arcposition along the curve (the curve runs from arcposition

0.0 to arcposition 1.0). The curve is not required to have a uniform sampling density.

Each point pi (for i 0 and i (N-1)) is implicitly part of two line segments, [pi-1

pi] and [pi pi+1]. For clarity, I will provide C++ pseudocode of the relevant data

structures and computations throughout this section, beginning with the representation

of the curve and sample points. The ‗vector‘ class is assumed to represent a 3-

dimensional vector and to support the expected operators.

struct curvePoint {

 vector pos;

 unsigned int index;

 float arcpos;

};

struct curve {

 unsigned int N;

 curvePoint* points;

};

All of these points are then placed in a standard kd-tree [19] (a 3d-tree in this case). A

kd-tree stores a point set and provides efficient retrieval of the subset of points that lie

 107

within a bounding rectangle. This can be generalized at minimal cost to return the

approximate nearest K neighbors to a given test point. We will assume that our kd-

tree provides the following function, which returns the K points closest to testPoint:

void search(vector testPoint,int K, curvePoint* points);

At each timestep at which a haptic constraint force is requested, we use this interface

to find the N closest points to the device position pdev. N is chosen empirically; higher

values of N require more computation time but reduce the occurrence of incorrect

forces resulting from sparse sampling of the curve. Figure 45 demonstrates this

problem and illustrates why using N=1 does not generally give correct results.

1

2

3

4

5

6

device

Figure 45. The device should be constrained to the segment between vertices 1 and 2,

but sparse sampling of the curve places it closer to vertex 4 than to either of these

vertices. This motivates the use of a broader nearest-neighbor search to handle this case

properly.

// Get the points closest to the device

vector pdev = getDevicePosition();

curvePoint neighbors[N];

myKDTree.search(pdev, N, neighbors);

 108

The N returned points are sorted by index, and for each returned point pi we build the

two associated line segments ([pi-1 pi] and [pi pi+1]) and insert them into an

ordered list of candidate line segments that might contain the closest point to our

haptic probe. This ordering reduces redundancy; we now have a maximum of (but

generally less than) 2N line segments to search. We can compactly represent each line

segment as its first index, so we can store the candidate set as an ordered, non-

redundant list of indices:

// Sort the candidate line segments by index

std::set<unsigned int> candidateSegments;

for(unsigned int i=0; i<N; i++)

 candidateSegments.insert(neighbors[i]);

Now for each of those candidate segments, we compute the smallest distance between

our device position pdev and the segment, using the approach presented (and available

online) in [171]. We assume we have a function distanceToSegment that takes a test

position and a segment defined by the indices of its two endpoints and returns the

corresponding distance and point of closest approach (as a t-value, where 0.0 is the

segment start and 1.0 is the segment endpoint). We find the segment with the smallest

distance to the haptic device point:

// Find the point of closest approach among all candidate segments

struct distanceRecord {

 int segmentIdx;

 float t;

 float distance;

};

float shortestDistance = FLT_MAX;

distanceRecord closest;

std::set<unsigned int>::iterator iter;

// Loop over all candidate segments

for(iter=candidateSegments.begin();

 iter != candidateSegments.end(); iter++) {

 int index = *iter;

 float t;

 // What‟s the smallest distance to this segment?

 float distance =

 distanceToSegment(pdev,index,index+1,t);

 distanceRecord dr(index,t,distance);

 109

 // Is this the smallest distance we‟ve found so far (to any segment)?

 if (distance < shortestDistance) {

 closest = dr;

 shortestDistance = distance;

 }

}

For most curves, it is now sufficient to simply apply a constraint force pulling the

device toward the closest point on the closest segment with stiffness kconstraint:

// Generate a constraint force pulling the haptic device toward the closest

// point on the curve

vector start =

 myCurve.points[closest.segmentIdx].pos;

vector end =

 myCurve.points[closest.segmentIdx +1].pos;

vector closestPoint =

 start + (end - start) * closest.t;

vector force =

 kconstraint * (closestPoint – pdev);

This approach, however, fails in the case illustrated in Figure 46. Here, due to normal

deviation from the constraint path (resulting from limited stiffness), the device passes

through vertex 4 on its way between vertices 1 and 2, but should still be constrained to

segment [1,2] to guide the user along the correct curve shape. This can be handled by

a modification to our distance-computation function, which takes into account the

arcdistance of the point to which the haptic device was most recently constrained.

Essentially, when choosing the closest point on the curve, we want to penalize points

that are far from the test point both in Euclidean distance and in arclength.

 110

1

2

3

4

5

6

device

1

2

3

4

5

6

device

Figure 46. The device passes through vertex 4 on its way between vertices 1 and 2, but

should still be constrained to segment [1,2] to guide the user along the correct curve

shape.

We assume that the distance computation function is provided the arcposition

of the point to which the device was previously constrained (or a flag indicating that

this is a new constraint and there is no previous state, in which case the distance

returned is just the usual Euclidean distance). For each segment we process, we find

the closest point on that segment to the haptic device and compute the corresponding

Euclidean distance as usual. We then take the absolute difference in arcposition

between this point and the previous constraint point, multiply it by an empirically-

selected penalty factor, and return this weighted ―score‖ as our distance value in the

above routine (this pseudocode replaces the distance computation in the above

routine):

// known from our previous iteration

float previousArcPos;

float distance = distanceToSegment(pdev,

 index,index+1,t);

// Find the arcposition of the closest point of approach on this segment

float newArcPos =

 (myCurve.points[index].arcpos*t)

 +

 111

 (myCurve.points[index+1].arcpos*(1.0–t));

// Find the arcdistance between this test point and my previous constraint

// position

float arcidst =

 fabs(previousArcPos – newArcPos);

// Weight our 'distance' value according to this arcposition.

distance = distance +

 arcidst * ARC_PENALTY_WEIGHT;

Higher values of ARC_PENALTY_WEIGHT maximally eliminate ―jumping‖ along

the curve (Figure 46). However, inappropriately high values may cause friction-like

effects as the user rounds sharp corners in the curve and is prevented from ―jumping‖

around corners when he should be allowed to move to subsequent segments. We have

found this effect to be imperceptible for a wide range of values of

ARC_PENALTY_WEIGHT (see Section 6.2.3).

6.2.3 Implementation and Results

The above algorithm was implemented in C++ using the public-domain kd-tree

available in [136], a Phantom haptic device [110], and the CHAI 3D libraries for

haptics and visualization [42]. Curves were generated according to [129], with 2000

points. N (number of nearest neighbors to search) was set to 100, with the arc penalty

weight set to 1.0.

Figure 47 demonstrates the robustness of our approach. We see the actual path

of the device in green, constrained by force vectors (indicated in black) to the curve.

We see several regions (highlighted in blue) where the device very closely approaches

a region of the curve that is distant from the current constraint position in terms of

arclength, and the constraint position correctly remains on the current region of the

curve.

 112

-6 -5.5 -5 -4.5 -4 -3.5 -3 -2.5 -2
-4

-3

-2

-1

0

1

2

3

4

X Position (cm)

Z
 P

o
s
it

io
n

 (
c
m

)

Curve

Constraint position

Device position

-6 -5.5 -5 -4.5 -4 -3.5 -3 -2.5 -2
-4

-3

-2

-1

0

1

2

3

4

X Position (cm)

Z
 P

o
s
it

io
n

 (
c
m

)

Curve

Constraint position

Device position

Figure 47. Black lines indicate correspondences between device position (green) and

constraint position (red). The highlighted areas show regions where the device

approached a region on the curve that was distant in terms of arclength and was thus

appropriately constrained to the current curve segment, despite being physically closer

to the “incorrect” segment.

For the constant values presented above, mean computation time per haptic

iteration on a 1GHz Pentium 4 was 0.2ms, well below the accepted perceptual

threshold of 1ms per haptic computation. Figure 48 shows the dependence of

computation time on the number of samples in the trajectory for a fixed N (number of

neighbors used in constraint search). We see that even with very large trajectories (up

to two million samples), computation time is well below 1ms. Figure 49 shows the

dependence of computation time on N (number of neighbors used in constraint search)

for a fixed trajectory size. Although this increase is also approximately linear, there is

a much more expensive constant factor associated with increasing N, since this

increases the number of floating-point distance computations.

 113

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Millions of trajectory samples

M
e
d

ia
n

 f
o

rc
e
 c

o
m

p
u

ta
ti

o
n

 t
im

e
 (

m
s
)

Figure 48. Increase in computation time with increasing trajectory size, N (number of

neighbors used) fixed at 100. The increase is approximately linear, but even with two

million samples, the computation time is well under 1ms.

200 400 600 800 1000 1200 1400 1600 1800 2000
0

0.5

1

1.5

2

2.5

N (number of neighbors used)

M
e
d

ia
n

 f
o

rc
e
 c

o
m

p
u

ta
ti

o
n

 t
im

e
 (

m
s
)

 114

Figure 49. Increase in computation time with increasing N (number of neighbors used),

trajectory size fixed at 2000.

As a final point, we note that our distance-computation function generates the

closest point returned from each point/segment comparison, so this is the only part of

our overall approach that would need to be modified to represent line segments as

Bezier curve segments or other interpolation functions.

An implementation of the algorithm discussed here is included as part of

our ―haptic mentoring‖ experimental platform [129], available at:

http://cs.stanford.edu/~dmorris/haptic_training

6.3 Distance Map Generation

6.3.1 Terminology

For an object O on
n
 and a set of points P on

n
, the distance field is defined as the

smallest distance from each point in P to a point on O. The distance metric is

generally Euclidean distance, but any symmetric, non-negative function satisfying the

triangle inequality can serve as a distance metric. The distance map is the distance

field annotated with the position of the closest point on O for each point in P. When

O is an orientable surface (a surface that partitions
n
 into two subspaces), the sign of

the stored distance at a point indicates the subspace in which that point lies (in

particular, this sign is often used to indicate whether a point is inside or outside a

closed surface O). The distance transform takes a set of points P and an object O and

annotates P with a distance map on O. The closely-related closest-point transform

takes a set of points P and an object O and annotates each point in P with the location

of the closest point on O, without distance information. The closest-point transform is

computed by definition whenever a distance map is generated.

http://cs.stanford.edu/~dmorris/haptic_training

 115

6.3.2 Background

The distance map is an implicit object representation with extensive applications in

computer graphics, for example in physical simulation [59] and isosurface generation

[205].

Distance maps have also been applied in haptics, to search for collisions

between a haptic tool and the environment [117], to provide constraint forces when

navigating a volume [17], and to constrain a surface contact point to the boundary of a

region [98].

Several methods have been proposed for computing distance fields, distance

maps, and closest point transforms. Many applications in computer animation use the

approximate but extremely efficient Fast Marching Method [175]. [113] proposes a

method based on Voronoi regions and local rasterization, and provides an open-source

implementation [112]. More recently, approaches have emerged that use parallel

graphics hardware to accelerate distance field computation [189].

We propose an alternative method for generating exact distance maps from

point sets to triangle meshes that leverages bounding-box structures, which are already

generated as a preprocessing step for many interactive applications in haptics and

graphics.

6.3.3 Distance Map Generation

The following procedure assumes that we are given a list of points P, preferably sorted

in an order that promotes spatial coherence (this is generally the case in practice,

where regular voxel grids are used as the point set and sorting is trivial). We are also

given a set of triangles M, which represent one or more logical objects in a scene.

We further assume that a bounding-volume hierarchy has been built on M. A

strength of this approach is that it leverages common bounding-volume techniques,

which are used in a variety of existing applications in haptics and graphics. Without

loss of generality, we will assume that the hierarchy is composed of axis-aligned

bounding boxes (AABB‘s). Further details on the construction and characteristics of

AABB trees can be found in [40].

 116

The general approach to finding the closest point on M to a point Pi in P is to

descend the AABB tree, computing lower and upper bounds on the distance to each

box we descend, and tracking the lowest upper bound dlu we‘ve encountered so far

(the lowest ―guaranteed‖ distance). If the lower bound for a box is farther from Pi

than dlu, we can skip this box (see Figure 50). Using this culling approach and

exploiting spatial coherence among subsequent points in P by selectively mixing

breadth-first and depth-first examination of our bounding volume hierarchy, we can

build distance maps in a manner that is both efficient and heavily parallelizable.

Box A

Upper-bound distance

for box B

Lower-bound distance

for box B

Box D

Box C

Box B

Upper-bound distance

for box A

Lower-bound distance

for box A

Pi

Box A

Upper-bound distance

for box B

Lower-bound distance

for box B

Box D

Box C

Box B

Upper-bound distance

for box A

Lower-bound distance

for box A

Pi

Figure 50. Distance transformation for point Pi. If we’ve processed Box A before we

process Box B, we will not descend to Box B’s children, because Box B’s lower-bound

distance is greater than Box A’s upper-bound distance.

In the following pseudocode, we assume without loss of generality that the

AABB tree representing our triangle mesh is in the same coordinate frame as our point

list; in practice coordinate transformations are performed before distance computation

begins. We also assume for clarity of terminology that the list of points P is a series of

voxel locations (this is the case when computing the distance transform on a regular

grid), so we refer to the Pi‘s as ―voxels‖ and locations on the surface M as ―points‖.

// A simple AABB tree hierarchy

 117

// A generic tree node maintaining only a parent pointer. This pseudocode

// avoids pointer notation; all links within the tree and all references to

// AABBNode‟s in the code should be read as pointers.

struct AABBNode { AABBNode parent; };

// A structure representing a bounding box and pointers to child nodes.

struct AABBox : public AABBNode {

 // the actual bounding box

 vector3 xyzmax, xyzmin;

 // my children in the AABB tree

 AABBNode left, right;

}

// A structure representing a leaf node

struct AABBLeaf : public AABBNode {

 triangle t;

}

// The inputs to our problem

// The Pi‟s

std::list<vector3> voxels;

// The triangle set M, pre-processed into an AABB tree

AABBox tree_root;

// All the boxes we still need to look at for the current voxel. This may

// not be empty after a voxel is processed; placing nodes here to be used for

// the next voxel is our mechanism for exploiting spatial coherence.

std::list<AABBNode> boxes_to_descend;

// The smallest squared distance to a triangle we‟ve seen so far for the

// current voxel...

//

// We generally track squared distances, which are faster to compute than

// actual distances. When all is said and done, taking the square root of

// this number will give us our distance value for this voxel.

float lowest_dist_sq = FLT_MAX;

// The point associated with this distance

vector3 closest_point;

// The tree node associated with the closest point. We store this to help us

// exploit spatial coherence when we move on to our next voxel.

//

// This will always be a leaf.

AABBNode closest_point_node;

// The lowest upper-bound squared distance to a box we‟ve seen so far for

// the current voxel.

float lowest_upper_dist_sq = FLT_MAX;

// Process each voxel on our list, one at a time...

std::list<vector3>::iterator iter =

 voxels.begin();

while (iter != voxels.end) {

 118

 // Grab the next point

 vector3 v = (*iter);

 // Now we‟re going to find the closest point in the tree (tree_root)

 // to v...

 //

 // See below for the implementation of find_closest_point.

 find_closest_point(v);

 // Now output or do something useful with lowest_dist_sq and closest_point;

 // these are the values that should be associated with v in our output

 // distance map...

 do_something_useful();

 // So it‟s time to move on to the next voxel. We‟d like to exploit spatial

 // coherence by giving the next voxel a "hint" about where to start looking

 // in the tree. See the explanation below for what this does; the summary

 // is that it seeds 'boxes_to_descend' with a good starting point for the

 // next voxel.

 seed_next_voxel_search();

}

// Find the closest point in our mesh to the sample point v

void find_closest_point(vector3 v) {

 // Start with the root of the tree

 boxes_to_descend.push_back(tree_root);

 while(!(boxes_to_descend.empty)) {

 AABBNode node =

 boxes_to_descend.pop_front();

 process_node(node,v);

 }

}

// Examine the given node and decide whether we can discard it or whether we

// need to visit his children. If it‟s a leaf, compute an actual distance

// and store it if it‟s the closest so far.

//

// Used as a subroutine in the main voxel loop (above).

void process_node(AABBNode node, vector3 v){

 // Is this a leaf? We assume we can get this from typing, or that the

 // actual implementation uses polymorphism and avoids this check.

 bool leaf = isLeaf(node);

 // If it‟s a leaf, we have no more descending to do, we just need to

 // compute the distance to this triangle and see if it‟s a winner.

 if (leaf) {

 // Imagine we have a routine that finds the distance from a point to a

 // triangle; [171] provides an optimized routine with a thorough

 // explanation.

 float dsq;

 vector3 closest_pt_on_tri;

 // Find the closest point on our triangle (leaf.t) to v, and the squared

 // distance to that point.

 compute_squared_distance(v,leaf.t,

 dsq,closest_pt_on_tri;

 119

 // Is this the shortest distance so far?

 if (dsq < lowest_dist_sq) {

 // Mark him as the closest we‟ve seen

 lowest_dist_sq = dsq;

 closest_point = clost_pt_on_tri;

 closest_point_node = node;

 // Also mark him as the "lowest upper bound", because any future boxes

 // whose lower bound is greater than this value should be discarded.

 lowest_upper_dist_sq = dsq;

 }

 // This was a leaf; we‟re done with him whether he was useful or not.

 return;

 }

 // If this is not a leaf, let‟s look at his lower- and upper-bound

 // distances from v.

 //

 // Computing lower- and upper-bound distances to an axis-aligned bounding

 // box is extremely fast; we just take the farthest plane on each axis

 float best_dist = 0;

 float worst_dist = 0;

 // If I'm below the x range, my lowest x distance uses the minimum x, and

 // my highest uses the maximum x

 if (v.x < node.box.xyzmin.x) {

 best_dist += node.box.xyzmin.x - v.x;

 worst_dist += node.box.xyzmax.x - v.x;

 }

 // If I'm above the x range, my lowest x distance uses the maximum x, and

 // my highest uses the minimum x

 else if (v.x > node.box.xyzmax.x) {

 best_dist += v.x - node.box.xyzmax.x;

 worst_dist += v.x - node.box.xyzmin.x;

 }

 // If I'm _in_ the x range, x doesn't affect my lowest distance, and my

 // highest-case distance goes to the _farther_ of the two x distances

 else {

 float dmin =

 fabs(node.box.xyzmin.x - v.x);

 float dmax =

 fabs(node.box.xyzmax.x - v.x);

 double d_worst = (dmin>dmax)?dmin:dmax;

 worst_dist += d_worst;

 }

 // Repeat for y and z...

 // Convert to squared distances

 float lower_dsq = best_dist * best_dist;

 float upper_dsq = worst_dist * worst_dist;

 // If his lower-bound squared distance is greater than

 // lowest_upper_dist_sq, he can‟t possibly hold the closest point, so we

 // can discard this box and his children.

 if (lower_dsq > lowest_upper_dist_sq)

 return;

 120

 // Check whether I‟m the lowest upper-bound that we‟ve seen so far,

 // so we can later prune away non-candidate boxes.

 if (upper_dsq < lowest_upper_dist_sq) {

 lowest_upper_dist_sq = upper_dsq;

 }

 // If this node _could_ contain the closest point, we need to process his

 // children.

 //

 // Since we pop new nodes from the front of the list, pushing nodes to the

 // front here results in a depth-first search, and pushing nodes to the

 // back here results in a breadth-first search. A more formal analysis of

 // this tradeoff will follow in section 6.3.4.

 boxes_to_descend.push_front(node.left);

 boxes_to_descend.push_front(node.right);

 // Or, for breadth-first search...

 // boxes_to_descend.push_back(node.left);

 // boxes_to_descend.push_back(node.right);

}

When we‘ve finished a voxel and it‘s time to move on to the next voxel, we‘d

like to exploit spatial coherence by giving the next voxel a ―hint‖ about where to start

looking in the tree. We expect the node that contains the closest point to the next

voxel to be a ―near sibling‖ of the node containing the closest point to the current

voxel, so we‘ll let the next voxel‘s search begin at a nearby location in the tree by

walking a couple nodes up from the best location for this voxel.

The constant TREE_ASCEND_N controls how far up the tree we walk to find

our ―seed point‖ for the next voxel. Higher values assume less spatial coherence and

require more searching in the case that the next voxel is extremely close to the current

voxel. Lower values assume more spatial coherence and optimize the case in which

subsequent voxels are very close, while running a higher risk of a complete search.

Section 6.3.4 discusses the selection of an optimal value for

TREE_ASCEND_N.

void seed_next_voxel_search() {

 // Start at the node that contained our closest point and walk a few levels

 // up the tree.

 AABBNode seed_node = closest_point_node;

 for(int i=0; i<TREE_ASCEND_N; i++) {

 if (seed_node.parent == 0) break;

 else seed_node = seed_node.parent;

 }

 // Put this seed node on the search list to be processed with the next

 121

 // voxel.

 boxes_to_descend.push_back(seed_node);

}

In summary, for each voxel in Pi we track the lowest upper-bound distance that

we‘ve found for a box as we descend our AABB tree, and discard boxes whose lower-

bound distance is larger. When we reach a leaf node, we explicitly compute distances

and compare to the lowest distance we found so far. We exploit spatial coherence

when processing a voxel by first searching a small subtree in which we found the

closest point for the previous voxel.

6.3.4 Implementation and Results

The approach presented here was evaluated in the context of generating internal

distance fields (finding and processing only voxels that lie inside a closed mesh)

during the process of voxelization. Voxelizer is an application written in C++ that

loads meshes and uses a flood-filling process to generate voxel representations of

those meshes, optionally including distance fields. Both the flood-filling and the

distance-field generation use the public-domain AABB tree available in CHAI [42].

To evaluate the suitability of our approach and the benefit of our exploitation

of spatial coherence, we generated voxel arrays and distance fields for a variety of

meshes (Figure 51 and Figure 52) at a variety of voxel densities and a variety of

values for TREE_ASCEND_N (see above). Furthermore, at each parameter set, we

generated distance fields using both depth- and breadth-first search. The following

sections discuss the performance results from these experiments.

 122

(a) (b)

(c) (d)

(a) (b)

(c) (d)

Figure 51. Meshes used for evaluating distance map computation. (a) Gear: 1000

triangles. (b) Happy: 16000 triangles. (c) Dragon: 203000 triangles (d) Bunny: 70,000

triangles.

(a) (b)

(c) (d)

(a) (b)

(c) (d)

 123

Figure 52. The same meshes displayed in Figure 51, after using the voxelizer application

to identify internal voxels (voxel centers are shown in green for surface voxels and red

for internal voxels) by flood-filling. The long axis resolution in each case here is 50

voxels.

6.3.4.1 Overall Performance

Table 3 shows the computation time for flood-filling and distance-field generation for

each of the four test meshes at a variety of resolutions. The ―dragon‖, ―bunny‖, and

―happy‖ models were obtained from the Stanford 3D Scanning Repository [82]. The

―gear‖ model was obtained from the TetGen examples page [83]. The voxel arrays

generated contain surface and internal voxels only; the full distance field for voxels

outside the mesh is not generated. ―Long axis resolution‖ indicates the number of

voxels into which the longest axis of the mesh‘s bounding-box is divided; voxels are

isotropic so the resolutions of the other axes are determined by this value.

Mesh Triangles Long axis Voxels Total time (s) Distance time (s)

bunny 70k 30 7168 0.736 0.683

bunny 70k 75 95628 6.107 5.282

bunny 70k 135 529024 29.033 25.258

bunny 70k 195 1561728 82.341 71.585

gear 1k 30 4156 0.144 0.117

gear 1k 75 54270 1.751 1.383

gear 1k 135 286813 9.228 7.282

gear 1k 195 829321 27.137 21.387

happy 16k 30 2020 .13495 .1177

happy 16k 75 25308 1.387 1.208

happy 16k 135 132910 6.132 5.261

happy 16k 195 381120 16.956 14.48

dragon 203k 30 2550 0.494 0.47

dragon 203k 75 31674 3.158 2.859

dragon 203k 135 164061 11.839 10.558

dragon 203k 195 468238 30.13 26.633

 124

Table 3. A comparison of flood-filling and distance-computation times for all four

meshes at a variety of voxel resolutions.

We note that for small resolutions, on the order of 30 voxels, times for distance

computation are interactive or nearly interactive, even for complex meshes. We also

note that in general, distance computation represents the significant majority of the

total time required to perform the combined flood-filling and distance-field generation

(on average, distance-field generation represents 86% of the total time).

Figure 53 shows the dependence of computation time on long axis resolution

for all four meshes. As expected, all meshes display an exponential increase in

computation time as voxel resolution increases, but even at very high resolutions,

computation time is tractable for preprocessing applications (only above one minute

for one of the four meshes and only above a long axis resolution of 180 voxels).

20 40 60 80 100 120 140 160 180 200
0

10

20

30

40

50

60

70

Long axis mesh resolution (voxels)

C
o

m
p

u
ta

ti
o

n
 t

im
e
 (

s
)

bunny (70k tris)

gear (1k tris)

happy (16k tris)

dragon (203k tris)

Figure 53. Performance of our distance-map computation approach on all four meshes

at a variety of mesh resolutions.

 125

6.3.4.2 Spatial Coherence

To analyze the benefit of exploiting spatial coherence in distance-map computation,

and to identify the optimal value of TREE_ASCEND_N (the number of tree levels to

step up in generating a ―hint‖ location for the next voxel‘s distance search), voxel

arrays and distance fields were generated for all four meshes with various values of

TREE_ASCEND_N. Figure 54 shows the results for the ―happy‖ mesh (this mesh

was chosen arbitrarily; results were similar for all four meshes). A

TREE_ASCEND_N value of -1 indicated that spatial coherence was not exploited at

all; i.e. every distance search started at the top of the tree. A value of 0 indicated that

the ―hint‖ node was the leaf node (a single triangle) that contained the shortest

distance for the previous voxel.

Exploting spatial coherence yields five-fold improvement in performance (a

reduction in distance field time from 62 seconds to 13 seconds) for the largest

resolution shown in Figure 54. This corresponds to the difference between

TREE_ASCEND_N values of 0 and 1. Further increasing TREE_ASCEND_N does

not further improve performance; it is clear in Figure 54 that zero is the optimal value.

This is equivalent to assuming that locality extends as far as the closest triangle; it

isn‘t worth searching neighboring AABB nodes as well before searching the whole

tree.

 126

-1 0 1 2 3 4 5 6 7
0

10

20

30

40

50

60

70

TREE_ASCEND_N value

C
o

m
p

u
ta

ti
o

n
 t

im
e
 (

s
)

Long axis voxels: 30

Long axis voxels: 75

Long axis voxels: 135

Long axis voxels: 195

Figure 54. Performance benefit of exploiting spatial coherence and optimal value

selection for TREE_ASCEND_N (results shown here are for the “happy” mesh). A

value of -1 indicated that spatial coherence was not exploited at all. A value of 0

indicated that the “hint” node was the leaf node (a single triangle) that contained the

shortest distance for the previous voxel.

6.3.4.3 Depth- vs. Breadth-First Search

To compare the use of depth- and breadth-first distance search, voxel arrays and

distance fields were generated for all four meshes using each approach. Figure 55

shows the results when using the optimal TREE_ASCEND_N value of 0. Depth-first

search is consistently better, but by a very small margin.

 127

20 40 60 80 100 120 140 160 180 200
0

5

10

15

Long axis mesh resolution (voxels)

C
o

m
p

u
ta

ti
o

n
 t

im
e
 (

s
)

Breadth-first

Depth-first

Figure 55. Comparison of depth- and breadth-first search for the “happy” mesh using a

TREE_ASCEND_N value of 0 (optimal).

When spatial coherence is not exploited – which serves as a surrogate for the

case in which the point set is not sorted and does not provide strong spatial coherence

– depth-first search performs significantly better. This is illustrated in Figure 56,

which shows results for the ―happy‖ mesh at various resolutions with no assumption

of spatial coherence.

 128

20 40 60 80 100 120 140 160 180 200
0

20

40

60

80

100

120

Long axis mesh resolution (voxels)

C
o

m
p

u
ta

ti
o

n
 t

im
e
 (

s
)

Breadth-first

Depth-first

Figure 56. Comparison of depth- and breadth-first search for the “happy” mesh using a

TREE_ASCEND_N value of -1 (no exploitation of spatial coherence).

6.3.5 Implementation Availability

A binary version of this application, with documentation and the models used in these

experiments, is available online at:

http://cs.stanford.edu/~dmorris/voxelizer

Voxelizer is currently used to generate the voxel meshes used in [126]; distance fields

are used to shade voxels based on their distances to anatomic structures.

Future work will include leveraging the obvious parallelism available in this

approach; voxels are processed nearly independently and could easily be distributed

across machines with a nearly linear speedup. Furthermore, the simple nature of the

computations performed here makes this suitable to parallelization across simple

processing units, such as those available on commercial GPU‘s, which have been

successfully used to process AABB-based collision queries by [201]. We would also

http://cs.stanford.edu/~dmorris/voxelizer

 129

like to explore the performance impact of using other bounding-volume hierarchies

(e.g. oriented-bounding-box trees and sphere trees), which fit trivially into our

framework.

6.4 Haptic Data Logging

6.4.1 Background

It is conventionally accepted that a user will begin to notice discretization artifacts in a

haptic rendering system if the system‘s update rate falls below 1kHz. Furthermore, as

a haptic application‘s update rate falls, the system becomes more prone to instability

and constraint violation. With this in mind, it is essential that designers of haptic

software structure applications to allow high-bandwidth, low-latency generation of

haptic forces.

There are two relevant implications of this requirement. First of all, haptic

computation must run on a thread that allows computation at 1kHz. This is non-trivial

on single-CPU systems running non-real-time operating systems, which typically have

thread timeslices of 15ms or more. In other words, naively sharing the CPU among a

haptic application thread and other application or system threads will not nearly

provide the necessary performance. Boosting thread and process priority is a simple

solution that is offered by common OS‘s, but indiscriminately boosting thread priority

can prevent other application tasks (e.g. graphic rendering) and even critical operating

system services from running. Common solutions to this problem include using dual-

CPU PC‘s, boosting thread priority while manually ensuring that the persistent haptic

loop will yield periodically, and/or using hardware-triggered callbacks to control the

rate of haptic force computation.

Additionally, this stringent performance constraint means that ―slow‖ tasks

(those that require more than one millisecond on a regular basis) cannot be placed in

the critical path of a haptic application. Graphic rendering, for example, is often

computationally time-consuming and is generally locked to the refresh rate of the

display, allowing a peak throughput of approximately 30Hz on most systems (lower if

 130

the graphical scene is particularly complex). For this reason, nearly all visuohaptic

applications decouple graphic and haptic rendering into separate threads.

Disk I/O is another task that incurs high latencies (often over 10ms),

particularly when bandwidth is high. For a haptic application that requires constantly

logging haptic data to disk – such as a psychophysical experiment involving a haptic

device – it is essential to place blocking disk I/O on a thread that is distinct from the

haptic rendering thread.

Using this common scheme, data synchronization between a haptic thread

(which collects position data from the haptic device, computes forces, and sends

forces to the device) and a ―slow‖ thread (handling graphics and disk I/O) can become

a bottleneck. Traditional locks allow the slow thread to block the haptic thread, and if

the locked region includes a high-latency operation, the haptic thread can stall for an

unacceptable period. Many applications are able reduce the data exchanged among

threads to a few vectors or small matrices, and forego synchronization entirely since

the probability and impact of data conflicts are rare.

Data logging tasks, however, cannot take this approach. Even small errors

resulting from race conditions can place data files in an unrecoverable state.

Furthermore, the high bandwidth of data flow increases the probability of conflicts if

data queued for file output is stored in a traditional linked list. We thus present a data

structure that allows lock-free synchronization between a producer thread and a

consumer thread, with the constraint that the consumer thread does not need to access

data immediately after the data are produced. The only synchronization primitive

required is an atomic pointer-sized write, provided by all current hardware. This

structure does not address sleeping; it‘s assumed that the producer never sleeps (it‘s a

high-priority loop). Periodically waking the consumer – who might sleep – is a trivial

extension.

We present this approach in the context of a haptic application, but it‘s equally

applicable to other applications with similar threading structures, for example

neurophysiological and psychophysical experiments. For example, the

 131

implementation discussed here is used by the software presented in [131], which is

used in the experiments presented in [145].

6.4.2 Data Structure

The data structure presented is labeled a ―blocked linked list‖ (BLL). The BLL is a

linked list of blocks of data records; the list‘s head pointer is manipulated only by the

consumer, and the list‘s tail pointer is manipulated only by the producer. The BLL is

initialized so that the head and tail pointers point to a single block. In pseudocode:

struct bll_record {

 // the relevant data structure is defined here; in practice the BLL is

 // templated and this structure is not explicitly defined

};

struct bll_block {

 // the data stored in this block

 bll_record data[BLOCK_SIZE];

 // how many data records have actually

 // been inserted?

 int count=0;

 // conventional linked list next pointer

 bll_block* next=0;

};

struct BLL {

 // conventional linked list head/tail ptrs

 bll_block *head,*tail;

 // initialize to a new node

 BLL() { head = tail = new bll_block; }

};

The BLL offers the following interface:

// This function is called only by the producer (haptic) thread to insert a

// new piece of data into the BLL.

void BLL::push_back(bll_record& d) {

 // If we‟ve filled up a block, allocate a new one. There‟s no risk of

 // conflict because the consumer never accesses the tail.

 if (tail->count == BLOCK_SIZE) {

 bll_block* newtail = new bll_block;

 newtail->next = tail;

 132

 // After this, I can never touch the old tail again, since the consumer

 // could be using it.

 tail = newtail;

 }

 // insert the new data record

 tail->data[count] = d;

 count++;

}

// This function is called only by the consumer (logging) thread to flush all

// available data to disk

void BLL::safe_flush() {

 // If the tail pointer changes during this call, after this statement,

 // that‟s fine; I‟ll only log up to the tail at this instant. I can‟t

 // access „tail‟ directly for the rest of this call.

 bll_block* mytail = tail;

 // If there are no filled blocks, this loop won‟t run; no harm done.

 while(head != mytail) {

 // Dump this whole block to disk or perform other high-latency operations

 fwrite(head->data, sizeof(bll_record),BLOCK_SIZE,myfile);

 // Increment the head ptr and clean up what we‟re done with

 bll_block oldhead = head;

 head = head->next;

 delete oldhead;

 }

};

The central operating principle is that the push_back routine only accesses the current

tail; when the tail is filled, a new block becomes the tail and this routine never touches

the old tail again. The safe_flush routine flushes all blocks up to but not including

the current tail. If the current tail changes during this routine‘s execution, it may leave

more than one block unflushed, but it will not conflict with the producer‘s push_back

routine.

These two routines comprise the important components of the data structure;

required but not detailed here are additional initialization routines and a ―tail flush‖

routine that flushes the current tail block and can be run when the producer is

permanently finished or has downtime (the pseudocode above never flushes the last,

partially-filled block). The BLL also presents an O(N) routine for safe random

 133

element access by the consumer thread, allowing access to elements up to but not

including the head block.

6.4.3 Implementation and Results

A template-based, C++ implementation of this data structure is available at:

http://cs.stanford.edu/~dmorris/code/block_linked_list.h

This implementation was used in [129], [131], and [145], and introduced no disk

latency on the high-priority haptic/experiment threads.

BLOCK_SIZE is a performance variable; in practice it is also templated but it

need not be the same for every block. Higher values improve bandwidth on the

consumer thread, since larger disk writes are batched together and allocated memory is

more localized, but may result in larger peak latencies on the consumer thread (due to

larger writes). Higher values of BLOCK_SIZE also increase the latency between

production and consumption. A BLOCK_SIZE value of 1000 was used in [129],

[131], and [145].

http://cs.stanford.edu/~dmorris/code/block_linked_list.h

 134

7 Standardized Evaluation of Haptic

Rendering Systems

For many applications in haptics, haptic feedback doesn‘t need to be accurate in a

physical sense, it just needs to ―feel good‖ in a way that‘s appropriate for the

application. This includes, for example, haptic games (Figure 57a) and haptic CAD

applications like virtual sculpting (Figure 57b).

 (a) (b)

Figure 57. Haptic applications that require only limited force-realism.

But for applications that require transferring skills from a virtual environment

to the real world, in particular for our haptic surgical training system, it‘s critical that a

haptic training environment not only be usable, but also be haptically accurate in terms

of the absolute forces that the user is learning to apply in simulation. However, haptic

applications are often built using existing algorithms and libraries whose real-world

accuracy has not been experimentally verified. This is a problem that faces us in

developing and verifying the surgical simulation environment presented in Section 3.

 135

On a related note, haptics researchers and engineers face a

particular challenge in reporting their results and assessing

published results. The bottom line result in many papers on haptics

is that an author has devised a new method for rendering some

physical phenomenon (e.g. friction, texture, etc.) but, it is often

difficult to convey or assess the true result – which is a haptic

sensation – in a printed or electronic publication.

 So we‘d like to address both of these problems: assessing the absolute

accuracy of haptic rendering algorithms, and also providing a standardized way of

presenting and comparing results in haptics. This section of the thesis describes the

use of haptic ground truth data to approach these challenges.

 The work presented here was published as [165].

The development and evaluation of haptic rendering algorithms presents two unique

challenges. Firstly, the haptic information channel is fundamentally bidirectional, so

the output of a haptic environment is fundamentally dependent on user input, which is

difficult to reliably reproduce. Additionally, it is difficult to compare haptic results to

real-world, ―gold standard‖ results, since such a comparison requires applying

identical inputs to real and virtual objects and measuring the resulting forces, which

requires hardware that is not widely available. We have addressed these challenges by

building and releasing several sets of position and force information, collected by

physically scanning a set of real-world objects, along with virtual models of those

objects. We demonstrate novel applications of this data set for the development,

debugging, optimization, evaluation, and comparison of haptic rendering algorithms.

 136

7.1 Introduction and Related Work

Haptic rendering systems are increasingly oriented toward representing realistic

interactions with the physical world. Particularly for simulation and training

applications, intended to develop mechanical skills that will ultimately be applied in

the real world, fidelity and realism are crucial.

A parallel trend in haptics is the increasing availability of general-purpose

haptic rendering libraries (e.g. [42], [174], [173]), providing core rendering algorithms

that can be re-used for numerous applications. Given these two trends, developers

and users would benefit significantly from standard verification and validation of

haptic rendering algorithms.

In other fields, published results often ―speak for themselves‖ – the correctness

of mathematical systems or the realism of images can be validated by reviewers and

peers. Haptics presents a unique challenge in that the vast majority of results are

fundamentally interactive, preventing consistent repeatability of results. Furthermore,

it is difficult at present to distribute haptic systems with publications, although several

projects have attempted to provide deployable haptic presentation systems ([42], [70]).

Despite the need for algorithm validation and the lack of available approaches

to validation, little work has been done in providing a general-purpose system for

validating the physical fidelity of haptic rendering systems. Kirkpatrick and Douglas

[99] present a taxonomy of haptic interactions and propose the evaluation of complete

haptic systems based on these interaction modes, and Guerraz et al [71] propose the

use of physical data collected from a haptic device to evaluate a user‘s behavior and

the suitability of a device for a particular task. Neither of these projects addresses

realism or algorithm validation. Raymaekers et al [159] describe an objective system

for comparing haptic algorithms, but do not correlate their results to real-world data

and thus do not address realism. Hayward and Astley [78] present standard metrics

for evaluating and comparing haptic devices, but address only the physical devices and

do not discuss the software components of haptic rendering systems. Similarly,

Colgate and Brown [41] present an impedance-based metric for evaluating haptic

devices. Numerous projects (e.g. [58], [193]) have evaluated the efficacy of specific

 137

haptic systems for particular motor training tasks, but do not provide general-purpose

metrics and do not address realism of specific algorithms. Along the same lines,

Lawrence et al [104] present a perception-based metric for evaluating the maximum

stiffness that can be rendered by a haptic system.

This section addresses the need for objective, deterministic haptic algorithm

verification and comparison by presenting a publicly available data set that provides

forces collected from physical scans of real objects, along with polygonal models of

those objects, and several analyses that compare and/or assess haptic rendering

systems. We present several applications of this data repository and these analysis

techniques:

 Evaluation of rendering realism: comparing the forces generated from a

physical data set with the forces generated by a haptic rendering algorithm

allows an evaluation of the physical fidelity of the algorithm.

 Comparison of haptic algorithms: Running identical inputs through multiple

rendering algorithms allows identification of the numeric strengths and

weaknesses of each.

 Debugging of haptic algorithms: identifying specific geometric cases in which

a haptic rendering technique diverges from the correct results allows the

isolation of implementation bugs or scenarios not handled by a particular

approach, independent of overall accuracy.

 Performance evaluation: Comparing the computation time required for the

processing of a standard set of inputs allows objective comparison of the

performance of specific implementations of haptic rendering algorithms.

The data and analyses presented here assume an impedance-based haptic rendering

system and a single point of contact between the haptic probe and the object of

 138

interested. This work thus does not attempt to address the full range of possible

contact types or probe shapes. Similarly, this work does not attempt to validate the

realism of an entire haptic rendering pipeline, which would require a consideration of

device and user behavior and perceptual psychophysics. Rather, we present a data set

and several analyses that apply to a large (but not universal) class of haptic rendering

systems. We leave the extension of this approach to a wider variety of inputs and to

more sophisticated metrics as future work.

The remainder of this paper is structured as follows: Section 7.2 will describe

our system for physical data acquisition, Section 7.3 will describe the process by

which we simulate a contact trajectory for evaluation of a haptic rendering algorithm,

Section 7.4 will describe some example results we have obtained through this process,

and Section 7.5 will discuss the limitations of our method and several scenarios in

which our data and methods may be useful to others in the haptics community. We

conclude with a description of our public data repository and a discussion of future

extensions to this work.

7.2 Data Acquisition

Haptic rendering algorithms typically have two sources of input: a geometric model of

an object of interest and real-time positional data collected from a haptic interface.

The output of this class of algorithms is typically a stream of forces that is supplied to

a haptic interface. A key goal of our data and analyses is to compare this class of

algorithms to real-world data, which requires: (a) collecting or creating a geometric

model of a real-world object and (b) collecting a series of correlated forces and

positions on the surface of that object.

We have constructed a sensor apparatus that allows the collection of this data.

Our specific goal is to acquire data for haptic interaction with realistic objects using a

hand-held stylus or pen-like device (henceforth called ―the probe‖). We use the

HAVEN, an integrated multisensory measurement and display environment at

Rutgers, for acquiring measurements interactively, with a human in the loop.

 139

In previous work ([147], [148]), we acquired such measurements using a

robotic system called ACME (the UBC Active Measurement facility). This robotic

approach has many advantages, including the ability to acquire repeatable and

repetitive measurements for a long period of time, and the ability to acquire

measurements from remote locations on the Internet. However, our current goals are

different, and a hand-held probe offers a different set of advantages that are important

for evaluating interaction with a haptic device.

First, it measures how a real probe behaves during natural human interaction,

and therefore provides more meaningful data for comparison. This is important,

because contact forces depend in part on the passive, task-dependent impedance of the

hand holding the probe, which is difficult to measure or to emulate with a robot arm.

Second, the dexterity of robot manipulators available today is very poor in comparison

with the human hand. Furthermore, acquiring measurements in concave regions or

near obstacles using a robot is very difficult, but is easy for a human.

We acquired three types of measurements for each object in our data repository:

1. The object‘s 3D shape

2. Motion of the probe tip relative to the object

3. The force on the probe tip during contact

We describe these measurements in the remainder of this section, in reverse order.

Force data are acquired using a custom-designed hand-held probe built around a

Nano17 6-axis force/torque sensor (Figure 58) (ATI Industrial Automation, Apex, NC,

USA). The reported spatial resolution of the force sensor is as follows (the z-axis is

aligned with the axis of the probe): Fx,Fy 1/320 N; Fz 1/640 N; Tx,Ty 1/128 N·mm;

Tz 1/128 N·mm.

 140

Figure 58. The sensor used to acquire force and torque information, alongside a coin to

indicate scale.

A replaceable sphere-tipped Coordinate Measuring Machine (CMM) stylus is attached

to the front face of the force sensor, and a handle to the rear, allowing a user to drag

the probe tip over the surface being measured. The interchangability of the probe tip

is important, since the curvature of the contact area kinematically filters the probe

motion and thus impacts the acquired data.

As the surface is being probed, the force/torque measurements from the

Nano17 are sampled at 5kHz using a 16-bit A/D converter (National Instruments,

Austin, Texas, USA). The static gravitational load due to the probe tip is compensated

for based on the measured orientation of the probe. The force and torque measured at

the force sensor are transformed to the center of the probe tip to compute the contact

force on the tip.

In addition to measuring force and torque, the probe‘s motion is tracked to

provide simultaneous position data. The probe is tracked using a six-camera motion-

capture system (Vicon Peak, Lake Forest, CA, USA). Several small retroreflective

optical markers are attached to the probe, allowing the camera system to record and

reconstruct the probe‘s position and orientation at 60Hz. The reconstructed position is

accurate to less than 0.5mm.

 141

The object being measured is also augmented with optical tracking markers, so

the configuration of the probe with respect to the object is known even when the user

moves the object to access different locations on the surface. The object is scanned

with a Polhemus FastScan laser scanner (Polhemus, Colchester, VT, USA) to generate

a mesh representation of the object's surface. The manufacturer reports an accuracy of

1mm for the surface. A water-tight triangular mesh is extracted from the scans using a

fast RBF method. The location of the optical tracking markers are included in the

scan to allow registration of the surface geometry with the motion capture data

acquired during contact measurement. Figure 59 shows an example data series

acquired with our setup. The full data set is available in the public repository (see

Section 7.7).

Figure 59. Data collected from our scanning apparatus. Normal (z) forces are indicated

in red, tangential (x,y) forces are indicated in green and blue. The data presented here

represent a scanning motion, primarily on the y axis, on a flat plane. Brief initial and

final taps were added to aid registration of force and motion data; they are visible in the

normal force.

 142

Our initial scanning effort has focused on rigid objects, to constrain the analysis to

static geometry.

7.3 Data Processing

Given a set of scanned trajectories, we evaluate a haptic rendering algorithm

by feeding a sequence of scanned probe positions into the algorithm and comparing

the computed forces to the physically-scanned forces. For penalty-based haptic

rendering algorithms, this requires a pre-processing step to create a virtual trajectory

that is inside the virtual representation of the scanned object.

This section will describe this process, which can be summarized in three

stages:

1. Pre-processing of a scanned trajectory to allow direct comparison to rendered

trajectories.

2. Computation of rendered forces and a surface contact point trajectory by the haptic

rendering algorithm that is being evaluated, using the pre-processed input

positions.

3. Computation of performance metrics from the output of the haptic rendering

system.

Figure 60 summarizes this process.

 143

out-

trajectory

in-

trajectory

rendered

forces and

trajectory

projection

below model

surface

haptic

rendering

physical model
range

scan

surface probe

“true”

forces

surface

mesh
algorithm

evaluation
out-

trajectory

in-

trajectory

rendered

forces and

trajectory

projection

below model

surface

haptic

rendering

physical modelphysical model
range

scan

surface probe

“true”

forces

surface

mesh

surface

mesh
algorithm

evaluation

Figure 60. An overview of our data processing and algorithm evaluation pipeline. An

object is scanned, producing a 3D geometric model and an out-trajectory. An in-

trajectory is synthesized from this out-trajectory and is fed as input to a haptic

rendering system, which produces force and trajectory information. This information

can be compared to the physically-scanned forces and the original trajectory.

7.3.1 Data pre-processing

The haptic rendering algorithms on which we have performed initial analyses are

penalty-based: the virtual haptic probe is allowed to penetrate the surface of a

simulated object, and a force is applied to expel the haptic probe from the object. A

physical (real-world) probe scanning the surface of a physical object never penetrates

the surface of the object. Therefore a virtual scanning trajectory is not expected to be

identical to a physical trajectory, even if a user intends to perform the same probe

motions on the real and virtual objects. We therefore perform a pre-processing step

that – given a physical scanning trajectory – generates a sub-surface trajectory that

(under ideal conditions) produces a surface contact trajectory that is equivalent to the

 144

scanned trajectory. This allows a direct comparison of a trajectory collected from a

haptic simulation with the ideal behavior that should be expected from that simulation.

We refer to an ideal trajectory (one in which the probe never penetrates the surface of

the object) as an ―out-trajectory‖, and a trajectory that allows the probe to travel inside

the object as an ―in-trajectory‖. Figure 61 demonstrates this distinction.

Figure 61. An “out-trajectory” represents the path taken by a physical probe over the

surface of an object; a haptic rendering algorithm typically approximates this trajectory

with an “in-trajectory” that allows the probe to enter the virtual object.

The penetration depth (the distance between the in- and out-trajectories) of a

virtual haptic probe into a surface is generally dependent on an adjustable spring

constant, which is an input to the algorithm and should be considered part of the

system that is under evaluation; this constant is reported along with all results in our

online repository. The spring constant is assumed to be homogeneous for purposes of

the present analysis.

Typically, penetration depth and the resulting penalty force are related to this

spring constant according to Hooke‘s Law:

fp = -kx (1)

Here fp is the penalty force vector, k is the scalar stiffness constant, and x is the

penetration vector (the vector between the haptic probe position and a surface contact

 145

point computed by the haptic rendering algorithm). We use this relationship to

compute a corresponding in-trajectory for a physically-scanned out-trajectory.

Surface normals are computed at each point in the out-trajectory, using the

scanned geometric model of the object. These surface normals are then used to extract

the normal component of the recorded force at each point. Each point in the sampled

out-trajectory is then converted to a corresponding point in the in-trajectory by

projecting the surface point into the object along the surface normal, by a distance

inversely proportional to the chosen stiffness and directly proportional to the recorded

normal force (for a given normal force, higher stiffnesses should result in lower

penetration depths):

pin = pout - Fn / k (2)

Here pin and pout are corresponding in- and out-trajectory points, Fn is the recorded

normal force at each point, and k is the selected stiffness constant. This relationship is

illustrated in Figure 62. Each in-trajectory point is assigned a timestamp that is equal

to the corresponding out-trajectory point‘s timestamp.

Fn

pout

pin

-Fn

k

surface

Fn

pout

pin

-Fn

k

-Fn

k

surface

Figure 62. Computation of an in-trajectory point from a sampled out-trajectory point.

Following this computation, the in-trajectory corresponding to a physical out-

trajectory is the path that a haptic probe would need to take in a virtual environment so

that the surface contact point corresponding to that haptic probe path precisely follows

the sampled out-trajectory.

 146

7.3.2 Trajectory processing

The input to a haptic rendering algorithm is typically a geometric model of an object

of interest and a series of positions obtained from a haptic interface. For the present

analysis, we obtain a geometric model from the laser-scanning system described in

Section 7.1, and we present a stream of positions – collected from our position-

tracking system – through a ―virtual haptic interface‖. From the perspective of a

rendering algorithm implementation, this interface plays the role of a haptic device

that is able to report its position in Cartesian space.

Given an in-trajectory computed from a physical out-trajectory, we can thus

simulate a virtual haptic interaction with an object, which will produce a stream of

forces and – in the case of many common haptic rendering algorithms – a new out-

trajectory (which we refer to as a ―rendered trajectory‖), representing the path that a

virtual contact point traveled on the surface of the virtual object.

The computational complexity of this simulation is identical to the case in which a

haptic interface is used interactively, allowing assessment of computational

performance in addition to algorithm output.

7.3.3 Metric extraction

Each time an in-trajectory is fed through a haptic rendering algorithm, producing a

stream of forces and surface contact point locations, we collect the following

evaluation metrics:

 Output force error: the difference between the forces produced by the haptic

rendering algorithm and the forces collected by the force sensor. This is

summarized as a root-mean-squared Euclidean distance, i.e.:

N

i

ii rFpF
N

e
1

1
 (3)

 147

 Here N is the number of samples in the out-trajectory, Fpi is the physically-

scanned force at sample i and Fri is the rendered force at sample i. This metric is

referred to as ―RMS Force Error‖ in Section 7.4. The physically-scanned forces

have been resampled to align in time with the position samples.

 Output position error: the difference between the surface contact point position

produced by the haptic rendering algorithm and the physically sampled out-

trajectory. This can also be summarized as a root-mean-squared Euclidean

distance, although we have found that it is more valuable to collect the cases that

exceed a threshold instantaneous error, representing ―problematic‖ geometric

cases.

 Computational cost: the mean, median, and maximum numbers of floating-point

operations required to a compute a surface contact point and/or penalty force and

the floating-point operation count for the complete trajectory. While this is not a

truly platform-independent measure of computational complexity, it scales well

among CPU speeds and is roughly proportional to computation time on a

particular CPU.

We do not present these metrics as a comprehensive representation of haptic rendering

performance, rather we present them as examples of immediately-useful data that can

be extracted using our data collection system, data repository, and offline processing

approach. We anticipate that future work and future contributions by the haptics

community will expand the set of available metrics and assess their correlations to the

perceptual quality of haptic environments.

7.4 Experiments and Results

We used the analyses discussed in Section 7.3 to conduct four experiments that

attempt to quantify and compare haptic rendering algorithms. Specifically, we

explored:

 148

1. The relative accuracy and computational cost of a haptic proxy algorithm and a

rendering scheme based on voxel sampling.

2. The impact of simulated friction on the accuracy of haptic rendering and the use of

ground truth data for friction identification.

3. The impact of mesh resolution on the accuracy of haptic rendering.

4. The impact of force shading on the accuracy of haptic rendering.

For consistency, these analyses have all been performed using the same model (a

scanned plastic duck) and input trajectory (see Figure 63), which is available in the

online repository.

Figure 63. The model and scanned trajectory used for the experiments presented in

Section 7.4.

These results are presented as examples of analyses that can be derived from our data

sets, and their generalization to a wider variety of rendering algorithms, models, and

trajectories is left for future work and is the primary goal of our online repository.

 149

7.4.1 Proxy-based vs. voxel-based rendering

Our approach was used to compare the computational cost and force errors for a

public-domain implementation [42] of the haptic proxy (god-object) algorithm [218]

and a voxel-based rendering scheme [116], and to assess the impact of voxel

resolution on rendering accuracy. This analysis does not include any cases in which

the proxy provides geometric correctness that the voxel-based rendering could not; i.e.

the virtual haptic probe never ―pops through‖ the model.

Voxel-based rendering was performed by creating a fixed voxel grid and

computing the nearest triangle to each voxel center. The stored triangle positions and

surface normals are used to render forces for each voxel through which the probe

passes.

Results for the proxy algorithm and for the voxel-based algorithm (at two

resolutions) are summarized in Table 4, including the computational cost in floating-

point operations, the initialization time in seconds (on a 1.5GHz Pentium), and the

memory overhead. We observe that the voxel-based approach offers comparable force

error and a significant reduction in floating-point computation, at the cost of

significant preprocessing time and memory overhead, relative to the proxy (god-

object) approach. It should be noted that analysis of this particular trajectory does not

capture the fact that the proxy-based approach offers geometric correctness in many

cases where the voxel-based approach would break down. We will discuss this further

in section 7.5.

Algorithm Voxel

resolution

RMS force

error (N)

Floating-

point ops

Init

time (s)

Memory (MB)

voxel 32
3
 .136 484K 0.27 1.0

voxel 64
3
 .130 486K 2.15 8.0

proxy N/A .129 10.38M 0.00 0.0

Table 4. Accuracy and cost of haptic rendering using proxy- and voxel-based rendering

schemes.

 150

7.4.2 Friction identification and evaluation

Our approach was used to evaluate the impact of simulated friction on the accuracy of

haptic rendering, using a public-domain implementation [42] of the friction-cone

algorithm [76]. This analysis also demonstrates the applicability of our approach for

identifying rendering parameters – in this case a friction radius – from ground-truth

data.

This analysis uses the friction cone algorithm available in CHAI 3D (version

1.31). The in-trajectory derived from the physical-scanned (raw) trajectory is fed to

CHAI for rendering, and the resulting forces are compared to the physically-scanned

forces. The coefficient of dynamic friction is iteratively adjusted until a minimum

error between the physical and rendered forces is achieved. Static (stick-slip) friction

was not considered for this analysis.

Results for the no-friction and optimized-friction cases are presented in Table 5,

including the relative computational cost in floating-point operations. We observe that

the trajectory computed with friction enabled contains significantly lower force-

vector-error than the no-friction trajectory, indicating a more realistic rendering, with

only a slightly higher computational cost.

Friction radius (mm) RMS force error (N) Flops

0.0000 (disabled) 0.132 10.4M

0.3008 0.067 10.8M

Table 5. Rendering accuracy with and without simulated dynamic friction.

7.4.3 Impact of mesh resolution

Our approach was used to assess the impact of varying mesh resolution on the

accuracy of haptic rendering. This is a potentially valuable application of our data,

since mesh resolution is often varied to trade off performance for accuracy for specific

applications, and the use of ground truth data will allow application developers to

select minimal models that meet application-specific accuracy bounds.

 151

The haptic proxy algorithm was provided with an in-trajectory and with eight

versions of the duck model, each at a different tessellation level. The results for each

resolution are presented in Table 6 and Figure 64. We observe that the error is fairly

stable for a large range of resolutions between 1000 and 140000 triangles, and

increases sharply for lower resolutions.

Model size (kTri) Flops RMS force error (N) Relative error

0.2 9.7136M 0.085 9.92

0.5 10.361M 0.031 3.55

1 9.7921M 0.031 3.61

3 10.380M 0.022 2.61

6 10.560M 0.022 2.61

9 10.644M 0.015 1.80

64 10.064M 0.013 1.51

140 9.2452M 0.009 1.00

Table 6. Rendering accuracy of the duck model at various mesh resolutions, computed

using the proxy algorithm. “Relative error” is computed as a fraction of the error

obtained using the maximum-resolution model.

 152

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1 1 10 100 1000

Model Size (kTri)

R
M

S
 F

o
rc

e
 E

rr
o

r
(N

)
Shading disabled

Shading enabled

Figure 64. Impact of mesh size (logarithmic on the x-axis) and force shading on RMS

Force Error (y-axis) for our duck model, rendered with the proxy algorithm.

7.4.4 Impact of force shading

The analysis presented in Section 7.4.3 was repeated with force shading [125] enabled,

to quantify the impact of force shading on the accuracy of rendering this trajectory.

Force shading uses interpolated surface normals to determine the direction of feedback

within a surface primitive, and is the haptic equivalent of Gouraud shading.

Results are presented in Figure 64, along with the results assessing the impact

of model size on rendering accuracy. We observe that for a large range of model sizes

– between 1k and 10k triangles, a typical range for object sizes used in virtual

environments – force shading significantly reduces the RMS force error for rendering

our duck model. Note that the impact of force shading is related to the curvature of

the object being rendered, and an object with smoothly-varying curvature (like our

duck model) is expected to benefit significantly from force shading.

 153

7.5 Discussion

We have provided a series of ―ground truth‖ data sets for haptic rendering, acquired

with a novel scanning paradigm that allows force and position data to be acquired

during a natural, human-driven scanning motion. We have also presented an approach

for preprocessing this data to make it suitable as input for a variety of haptic rendering

algorithms, and we have provided a series of example analyses that demonstrate our

approach‘s ability to quantitatively assess haptic rendering systems.

A key application of these data and analyses is to assess the accuracy of a

particular haptic rendering system and to approximately bound the difference between

the forces experienced by a user through a haptic interface and the forces the user

would experience performing the same interactions with a real object. This analysis

can also be used to compare haptic rendering algorithms more objectively: if one

algorithm consistently produces a lower force error relative to a real data set than

another algorithm, it is objectively ―more realistic‖ by our metrics. In this context, our

ground truth data set and preliminary analysis techniques may play a role in haptics

similar to the role played by [169] in stereo computer vision.

This approach has an application not only in evaluating published rendering

systems, but also in debugging individual implementations. Debugging haptic

rendering systems is often difficult relative to debugging other computer systems, due

to the hard-real-time constraints, the nondeterminism introduced by physical devices,

and the difficulty of reliably replicating manual input. Our approaches and our data

sets allow a developer to periodically test a haptic rendering system via a series of

objective evaluations, and thus rapidly identify problems and isolate the changes that

caused them.

We have also provided an objective series of input data that can be used to

evaluate the computational performance of an algorithm. In this context, our data sets

and analyses provide a ―haptic benchmark‖, analogous to the rendering benchmarks

available to the graphics community, e.g. 3DMark (Futuremark Corp). Computational

performance of a haptic rendering system can vary significantly with input, but it is

difficult to describe and distribute the input stream used to generate a performance

 154

analysis result. By providing a standard data series and a set of reference results, we

present a performance benchmark that authors can use to describe algorithmic

performance. This is particularly relevant for objectively presenting the value of

optimization strategies for rendering and collision detection whose primary value may

lie in performance improvements. Performance results are still dependent on the

platform used to generate the results, but this information can be reported concisely

along with results.

The analyses presented here have focused primarily on ―force correctness‖,

with the ultimate metric of algorithmic correctness being the accuracy of output forces

relative to ground truth forces. However, the use of standardized, pre-recorded haptic

input data is also suited to assessing the geometric correctness of rendering algorithms,

and for identifying anomalous cases that cause incorrect behavior in haptic rendering

systems.

For example, Figure 65 illustrates a problematic geometry that can be captured

by our analysis approach. In this case, for certain stiffness values and angles of

extrusion (i.e. ―bump sharpness‖), the surface contact point produced by the proxy

algorithm becomes ―stuck‖ on the bump, producing an incorrect trajectory that

misrepresents object geometry. Our approach allows a rapid evaluation of this

geometry using a variety of synthetic models and a variety of algorithmic parameters

(friction values, stiffnesses), allowing quantification of such problematic cases for

particular renderer implementations. These cases are very difficult to reliably isolate

when a user and physical device are in the debugging loop.

 155

Figure 65. This failure case for the proxy algorithm is an example of a geometric

anomaly that can be captured and quantified using pre-recorded trajectories.

Our current approach and available data sets, however, suffer from significant

limitations. While a direct comparison of an algorithm‘s output forces to ground truth

forces is expected to correlate to some degree with perceptual realism, it is not nearly

a comprehensive metric. Furthermore, algorithmic performance and even results are

expected to vary somewhat when collected with a user and a physical device in the

loop, and no set of reference data can completely capture all possible cases that may

have particular impacts on various rendering algorithms. Despite these limitations, we

propose that a standard approach to haptic rendering analysis and standard data series

will significantly enhance the quality and objectivity of haptic rendering system

evaluation. In the following section, we will discuss future work and planned

improvements to our online repository that will broaden the applicability of our data

and methods.

7.6 Future Work

To address the limitations discussed in the previous section, future work will add both

data and additional analyses to our repository. In particular, we hope to capture a wide

variety of geometries, material types, contact pressures, and contact trajectories.

 156

Subsequent acquisitions will focus on adding more complex contact shapes (our

current probe approximates a single point of contact).

Furthermore, the simple RMS force error metric used in this paper is not

expected to be an optimal representation of perceptual accuracy of haptic rendering.

Future work will include the development and psychophysical evaluation of more

appropriate metrics for ―haptic correctness‖.

Given a sufficient variety of data, our approach also may have value in the

automated optimization of various parameters used in haptic rendering; the

identification of a dynamic friction coefficient in section 7.4.2 is a preliminary

example of this application. Future work will include the generalization of this

optimization scheme to a wider variety of parameters, e.g. static friction, local

compliance, roughness, and haptic texture.

7.7 Data repository

To provide a standard reference that can be used by the community for evaluation of

haptic rendering systems, the data, methods, and results discussed in this paper are

publicly available at:

http://jks-folks.stanford.edu/haptic_data/

http://jks-folks.stanford.edu/haptic_data/

 157

8 Conclusion and Future Work

8.1 Summary

This thesis has presented techniques for haptic rendering and physical simulation that

are relevant to applications in virtual surgery. We began with a description of our

simulation environment for virtual bone surgery, presenting several haptic rendering

techniques and evaluating the construct validity of our simulator. We subsequently

discussed several related bodies of work, focusing on problems related to – but not

limited to – our simulator.

The organization of this dissertation parallels our development process: this

project has proceeded in close collaboration with surgeons, and that collaboration has

revealed the essential technical problems whose solutions would contribute to

effective simulation. Our evaluation of haptic mentoring, though performed in an

abstract psychophysical context, emerged from the observation that haptic feedback

could be effective as a demonstration mechanism in a medical simulator. Our

approach to preparation and calibration of deformable objects emerged as our

simulator progressed toward incorporating soft tissues and required objects that were

both patient-specific (and thus prepared with little manual intervention) and realistic.

A number of haptic rendering and data processing techniques emerged in the

development of our simulator and the other projects presented in this thesis; Section 6

presented some of those techniques in a general context to broaden their applicability.

Finally, our approach to validating haptic rendering algorithms emerged from our need

to confirm and improve the realism of our simulator‘s rendering techniques. The use

 158

of ground truth data and data-driven methods in general form a common thread among

much of the work presented here.

8.2 Lessons Learned

8.2.1 The Role of Surgeons in Simulator Development

Many simulation projects to date have focused on – or have been motivated by –

specific technical problems, often problems related to soft-body deformation. This has

been essential to the development of core simulation technology, and work of this

nature will likely be of continued importance until accurate, interactive deformation

models are widely available to simulator developers.

On the other hand, our collaborative approach to simulator design incorporates

engineers, computer scientists, medical faculty, and experts in the pedagogical aspects

of medical simulation. This approach will likely be essential as medical simulation

matures and becomes a standard part of clinical training and surgical practice. It goes

without saying that an effective simulator requires accurate content that can only be

delivered in cooperation with medical personnel. But on a higher level, surgeons are,

ultimately, the ―customers‖ of medical simulation projects, and can provide invaluable

advice on the level of required realism, which may vary tremendously across

applications (for example, training residents may require more precision than

refreshing experts) and across surgical procedures. While computer scientists can

often get stuck on improving overall realism (particularly graphical realism), surgeons

are able to describe the sources of feedback that are critical to surgical training, which

may be visual or non-visual, and some visual subtleties may even be enhanced by non-

photorealistic rendering. This is the approach we‘ve taken with our simulation

environment; overall realism was deemed to be less important than accurately

providing the visual, haptic, and auditory cues that guide surgical decision-making.

And within the set of those cues that are visual, we focused on rendering the features

that surgeons identified as most relevant. For example, we determined that

nonrealistic bone rendering is acceptable, but that it is critical for soft-tissue structures

to become visible through drilled bone as the bone becomes thin.

 159

Furthermore, surgeons will ultimately govern the adoption of simulation

technology. Surgeons make decisions regarding resident curricula and departmental

budgets, thus their enthusiasm – in addition to their intuition – is critical to progress in

this area. Many simulation projects will begin and end according to the cycle of Ph.D.

students in technical disciplines, but projects that last and become part of surgical

curricula – and are eventually disseminated beyond the developing institutions – will

be those that have garnered the support and enthusiasm of medical departments.

 Finally, tuning of critical constants in simulation is often best performed with

assistance from experienced surgeons. Nearly every algorithm for deformation or

haptic rendering requires adjusting some set of values that affect the interactive

behavior of the system, or control tradeoffs between performance and accuracy. And

while these values often have a theoretical basis and can be set to ―correct‖ values or

can be set using ground truth data, it may be more efficient in some cases to allow

experienced surgeons to adjust them interactively. Similarly, some systems may be

subject to noise or other disturbances, such that values set based on theory or ground

truth may still yield imperfect simulations. In these cases, it may also be appropriate

to allow a surgeon to adjust on-screen dials or configuration files to optimize system

behavior. Furthermore, it is often the case that simulations need not – or should not –

be perfectly realistic, and in these cases the subjective impressions of target users are

better reflections of ―correctness‖ than theory or ground truth. For example, a

preoperative rehearsal system might be best run at speeds significantly faster than real-

time, to minimize rehearsal time, so a ―realistic‖ drilling simulation may not be

appropriate.

In this dissertation, we have allowed certain parameters to be calibrated

manually by surgeons, where such calibration was tractable and not impractically

time-consuming. For example, bone removal rates and stiffness values for our drilling

simulation were bound to on-screen widgets that were adjusted over time by

collaborating surgeons. On the other hand, Section 5 focuses on automatically

calibrating complex deformable materials, whose parameter sets are both unintuitive

and impractically large, and thus cannot be calibrated manually.

 160

8.2.2 Observations on User Interfaces for Virtual Surgery

Much of the feedback that surgeons have provided about our simulation environment

has focused on user interface. Surgeons are generally quite comfortable using haptic

devices for drilling (Figure 66a), find the use of digital foot pedals (Figure 66b) to be

sufficiently representative of the pneumatic foot pedals used intraoperatively, and

report that their experience viewing operative fields through a surgical microscope

translates well to viewing virtual scenes through the binocular stereo display used in

our prototype (Figure 66c). However, surgeons have a particularly difficult time

adjusting to switching tools and manipulating the camera in the virtual environment.

This is consistent with our anecdotal observations collected during the course of the

experiment presented in Section 3; we noted that surgeons had some difficulty re-

creating the microscope (virtual camera) positions they are accustomed to, and thus

spent a disproportionate amount of time manipulating the camera

.

 (a) (b) (c)

Figure 66. Components of our surgical workstation. (a) Haptic devices for drilling and

suction, (b) foot pedals for enabling the drill/suction tools and zooming the camera, (c)

binocular stereo display.

 Microscopes used intraoperatively for microsurgical procedures generally have

six degrees of freedom, all of which are simultaneously adjusted when the surgeon

releases a brake on the device. Friction and inertia limit rapid movement. Critically,

the surgeon himself moves with the microscope, a phenomenon that is challenging to

replicate in simulation without introducing a costly and ergonomically difficult display

platform. Similar challenges arise in simulating open procedures, where a surgeon

himself has six degrees of ―camera‖ freedom and moves continuously.

 161

We experimented with several approaches to providing six degrees of camera

control in our simulator, and hope to conduct a formal study in the future that

evaluates the strengths and weaknesses of each. Here we will briefly discuss some of

the approaches we tried, hopefully offering some insight to those developing similar

systems and choosing among camera control strategies.

We initially mapped the six degrees of freedom of a six-degree-of-freedom

(three active, three passive) haptic device to the six degrees of freedom of the camera.

This approach presents two significant problems. Firstly, because haptic devices with

this (typical) configuration cannot be actively oriented and do not have infinite ranges

of motion in any degree of freedom (rotational degrees are particularly limited), device

movement must be mapped to camera movement in a relative, ―clutched‖ sense. This

is not necessarily problematic, but it does not reflect the feel of an absolutely-

positioned surgical microscope. Furthermore, we found the rotational degrees of

freedom of the haptic device – which is small and has limited friction/inertia – to be

more sensitive than the corresponding degrees of freedom found on a microscope.

Consequently, it was difficult to translate the virtual camera without simultaneously

rotating it.

We solved the latter problem by discarding the rotational degrees of freedom

of the haptic device when manipulating the camera, and mapping the three

translational degrees of freedom of the haptic device to either the rotational or

translational degrees of freedom of the camera, depending on the state of a button.

When one button is pressed, translating the device translates the camera; when a

different button is pressed, translating the device rotates the camera.

Once an intuition is developed for this scheme, we find that it is much easier to

control than the scheme employing all six degrees of device freedom, since only three

degrees of freedom are active at one time. However, building such an intuition for this

control scheme is difficult for many users. Mapping device translation to camera

rotation is fairly straightforward; we explain it to novices as grabbing the back of a

video camera that is rotating on a tripod. However, users have significant trouble

planning camera movements, which requires decomposing a desired camera state

 162

(position and orientation) into the translational and rotational paths necessary to arrive

at that state. A user can often imagine himself at a particular place in the scene,

looking in a particular direction, but it is often unclear what sequence of rotations and

translations would move the camera from the current state to the imagined or desired

state.

Future work will explore the psychophysical aspects of this problem in more

detail, building on existing literature in the virtual reality community on first-person

navigation and camera/scene manipulation ([72], [190], [192], [47], [216], [48], [208],

[14], [46], [188], [187], [158], [29]). We are also experimenting with isometric, six-

degree-of-freedom camera controllers based on optical tracking and/or strain gauges,

and with absolutely-positioned camera controllers based on rigid linkages with

potentiometers or encoders.

8.3 Future Work

The individual sections of this dissertation discussed future work related specifically

to each of the topics discussed. This section will first discuss work that will enable the

integration of the components presented in this dissertation, then will propose several

broader areas for research in surgical simulation.

8.3.1 Integration into the Bone Surgery Simulator

Future work at Stanford on the simulation environment for bone surgery will include

the integration of the components discussed here, particularly in applying the work

developed in Sections 4, Section 5, and Section 7 to the environment discussed in

Section 3. Haptic mentoring – discussed in an abstract context in Section 4 – offers

tremendous possibilities for surgical simulation, and a basic implementation of this

technique was discussed in Section 3. Before this can be more effectively integrated

into a surgical trainer, future work will include selecting exactly the haptic features

that should be presented to a trainee, evaluating the tradeoff between position gain and

force playback, and formally evaluating the efficacy of this approach in teaching

surgical skills. The techniques presented in Section 5 prepare anatomy models for

 163

real-time deformation, and their incorporation into our simulation environment – for

example to represent tumors, muscle tissue, etc. – will require further work on image

segmentation (to construct surface models from image data), collision detection, and

haptic rendering (the simulation techniques referred to in Section 5 do not proceed at

haptic rates and do not trivially yield haptic feedback forces).

8.3.2 New Directions

The remainder of this section proposes several broader areas for research in surgical

simulation.

8.3.2.1 Patient-specific Simulation

A key application of medical simulation will likely be patient-specific simulation, i.e.

practicing a particular procedure on an actual patient‘s anatomy, pathology, and

physiology. This will allow surgeons to rehearse preoperatively in cases where a

surgery may be challenging, where adverse events are considered likely, or where

multiple approaches may be possible. Furthermore, patient-specific simulation will

allow residents to review actual cases before or after procedures to obtain a deeper

understanding of intraoperative events. However, several challenges need to be

addressed before patient-specific simulation becomes a reality.

 The first and most critical is automated segmentation of medical images. It is

expected that a simulation environment will treat different tissue types differently (for

example, bone might be voxelized as per Section 3 of this dissertation, while a muscle

might be prepared as a deformable object as per Section 5). Segmentation, however,

is still a largely open problem (reviews of core techniques are provided in [149], [39],

[115], [202], [22]). Achieving success in patient-specific simulation will thus require

domain-specific identifications of which tissue types need to be extracted per-patient,

which can be used from canonical atlases, which can be segmented with limited

accuracy, etc. A closely-coupled problem is image registration: the alignment of

multiple images – captured at different times or via different modalities – to

supplement the information available in a single image. Automatic registration is also

considered an open problem and has yet to emerge as a common feature in

 164

commercial image-processing platforms. [109] provides a review of core techniques

in this area. Registration is particularly relevant for patient-specific simulation, as

certain critical structures may be visible in some modalities but not in others, so

multiple images are required to gather all the information necessary for a complete

rehearsal. For example, CT images of the temporal bone region simulated by our

environment generally present crisp images of bone boundaries, while MR images

reveal nerves and blood vessels not visible via CT.

 Beyond segmentation and registration, patient-specific simulation will likely

also require information about tissue properties, physiology, and pathology that are

currently beyond the scope of automatic determination from image data alone. Future

work will be required to assess whether using canonical values for mechanical tissue

properties is sufficient for patient-specific rehearsal, or whether such properties can be

automatically determined from image density values. The work on tissue property

acquisition discussed in Section 2.4 will need to continue into a clinical setting, and

will likely be coupled with non-invasive measurements of human tissue properties

using optical imaging or video sequences.

Perhaps the most significant problem in the area of patient-specific simulation

is the identification of the ideal feature set for a patient-specific simulator. In other

words, what type of simulation will surgeons actually use in practice? A fully realistic

simulator is unlikely to be adopted, as surgeons are unlikely to routinely spend five

non-clinical hours preparing for a five-hour procedure. In general, surgeons are likely

to be interested in specific components of a procedure, and providing a user interface

that allows surgeons to identify and ―fast-forward‖ to those components – perhaps

based on sequences of events recorded from canonical procedures – is a target for

future research. The ―right‖ application – the tool a surgeon would want on his or her

desk for frequent use – will likely sit somewhere between simulation and interactive

visualization.

8.3.2.2 Curriculum Development

Even given an ideal physical simulator and user interface, the successful application of

medical simulation to resident training will require significant curriculum

 165

development, integrating input from surgeons, educators, and simulation engineers.

Whether this will require task-specific manual preparation for new disciplines and/or

new cases is not yet clear; future work will focus both on specific curriculum

development and on techniques for accelerating curriculum development, including

automatic preparation of case data, improved user interfaces for interactive atlases,

and design guidelines for preparing new simulation-based material.

8.3.3.3 Automated Evaluation

Closely related to curriculum development is the topic of automated evaluation.

Simulators provide a potential mechanism for standardizing the evaluation of

residents, which is currently somewhat subjective in most disciplines and varies

among instructors and among institutions. Furthermore, simulators offer the

possibility of immediate, trainee-specific feedback that can optimize a resident‘s

training program and focus each user on specific problem areas.

 However, significant work needs to be done to enable automated assessment of

correctness and automated scoring. This may take the form of recognizing

physiologically-threatening events, may depend on explicitly-defined ―correct

techniques‖ reported by surgeons, and/or may utilize comparisons to canonical

procedures performed by skilled surgeons. We are currently using the data collected

for the validation experiment presented in Section 3 (recorded simulated procedures,

instructor-assigned scores, and reported experience levels) to build automated

classifiers that separate novices from experts ([179], [178], [177]). Later we plan to

extend this to automated scoring, and ultimately to an interactive training environment

for temporal bone procedures. Other work in this area focuses on defining Markov

models for correct surgical procedures ([163], [164], [162], [52], [86]).

8.3.3.4 Non-Traditional Applications

The final area for future research in medical applications that we‘ll highlight here is

the application of simulation technology to non-traditional simulation settings, i.e.

applications outside of the standard surgical training/rehearsal model.

 166

One particularly appealing model is simulation for veterinary care, focusing on

surgeries for uncommon species on which a veterinarian may be required to perform a

procedure with little background. While most veterinarian will encounter primarily

domestic animals (pets and livestock), a veterinarian working at a zoo, wildlife

sanctuary, wildlife rehabilitation center, etc. is likely to encounter species that his or

her veterinary training did not cover. Simulation – even based on a small number of

canonical models for each species – offers veterinarians a mechanism for rapid

practice on representative anatomy, physiology, and pathology. Future work in this

area will focus largely on acquiring image data, physiology data, and tissue property

information for a variety of species, and extending existing simulation work (for

human applications) to take advantage of this data.

 Another potential application for simulation is in training non-surgical

personnel who may have to perform basic surgical procedures in crisis situations or in

situations where medical personnel or hospital transport are unavailable. This may

include first responders (particularly EMT‘s and paramedics), non-surgeon physicians,

nurses, physician assistants, and military personnel. Similarly, simulation offers a

mechanism for preparing even experienced surgeons for unusual surgical conditions,

e.g. battlefield surgery, on-site surgery during crises, surgery in poorly-equipped

hospitals, etc. Work in this area will focus largely on curriculum development, and

may place only limited requirements – relative to routine resident training – on

simulation precision.

 Finally, simulation – likely coarse simulation – may offer an interactive

mechanism for patients and their families to quickly understand procedures

preoperatively, in significantly more detail than a surgeon can provide verbally.

While this may not be desirable for all patients, the medical community strives to

make relevant information available to patients, and simulation-based presentations

may be efficient and effective in introducing surgical concepts to patients. Again,

precision is unlikely to be a limiting factor here; future work in this area will focus

primarily on curriculum development and user interface.

 167

References

[1] Abaqus/Standard and Abaqus/CAE. Abaqus, Inc., Providence, RI.

http://www.hks.com/

[2] Abbott J, Marayong P, Okamura A. Haptic Virtual Fixtures for Robot-Assisted

Manipulation. 12th International Symposium of Robotics Research (ISRR),

October 2005.

[3] Adams RJ, Klowden D, Hannaford B. Virtual Training for a Manual

Assembly Task. Haptics-e, Vol. 2, No. 2, 2001.

[4] Agus M, Brelstaff G, Giachetti A, Gobbetti E, Zanetti G, Zorcolo A, Picasso

B, Franceschini SS. Physics-based burr haptic simulation: tuning and

evaluation. 12th IEEE International Symposium on Haptic Interfaces for

Virtual Environment and Teleoperator Systems. Pages 128-135. IEEE

Computer Society Press, April 2004.

[5] Agus M, Giachetti A, Gobbetti E, Picasso B, Franceschini SS, Zanetti G,

Zorcolo A. A haptic model of a bone-cutting burr. Proceedings of Medicine

Meets Virtual Reality 2003. Pages 4-10, IOS, Amsterdam, The Netherlands,

January 2003.

http://www.hks.com/

 168

[6] Agus M, Giachetti A, Gobbetti E, Zanetti G, John NW, Stone RJ.

Mastoidectomy Simulation with Combined Visual and Haptic Feedback.

Proceedings of Medicine Meets Virtual Reality 2002, pages 17-23, IOS,

Amsterdam, The Netherlands, January 2002.

[7] Agus M, Giachetti A, Gobbetti E, Zanetti G, Zorcolo A. A multiprocessor

decoupled system for the simulation of temporal bone surgery. Computing and

Visualization in Science. 2002 5(1):35-43.

[8] Agus M, Giachetti A, Gobbetti E, Zanetti G, Zorcolo A. Adaptive techniques

for real-time haptic and visual simulation of bone dissection. Proceedings of

the IEEE Virtual Reality Conference, pages 102-109, IEEE Computer Society

Press, March 2003.

[9] Agus M, Giachetti A, Gobbetti E, Zanetti G, Zorcolo A. Real-time Haptic and

Visual Simulation of Bone Dissection. Presence: Teleoperators and Virtual

Environments, 12(1): 110-122, February 2003.

[10] Agus M, Giachetti A, Gobbetti E, Zanetti G, Zorcolo A. Real-time Haptic and

Visual Simulation of Bone Dissection. Proceedings of the IEEE Virtual

Reality Conference, pages 209-216, IEEE Computer Society Press, February

2002.

[11] Agus M, Giachetti A, Gobbetti E, Zanetti G, Zorcolo A. Hardware-Accelerated

Dynamic Volume Rendering for Real-Time Surgical Simulation. Workshop on

Virtual Reality Interactions and Physical Simulations (VRIPHYS) 2004,

September 20-21, 2004.

 169

[12] Ahmad A, Alnoah Z, Kochman ML, Krevsky B, Peikin SR, Mercogliano G,

Bailey M, Boynton R, AND Reynolds JC. Endoscopic Simulator Enhances

Training of Colonoscopy in a Randomized, Prospective, Blinded Trial.

Gastrointestinal Endoscopy, April 2003, 57(5): S1499.

[13] Antani S, Xu X, Long L, Thomas G. Partial Shape Matching for CBIR of

Spine X-ray Images. Proceedings of the 16th SPIE Symposium on Electronic

Imaging, San Jose, CA, 2004.

[14] Balakrishnan B and Kurtenbach B. Exploring Bimanual Camera Control and

Object Manipulation in 3D Graphics Interfaces. Proceedings of the ACM

Conference on Human Factors in Computing Systems (CHI) 1999.

[15] Balaniuk R and Salisbury JK. Dynamic Simulation of Deformable Objects

Using the Long Elements Method. IEEE Symposium on Haptic Interfaces for

Virtual Environment and Teleoperator Systems 2002: 58-65.

[16] Balaniuk R and Salisbury JK. Soft-Tissue Simulation Using the Radial

Elements Method. Surgery Simulation and Soft Tissue Modeling:

International Symposium, IS4TM 2003 Juan-Les-Pins, France, June 12-13,

2003.

[17] Bartz D and Guvit O. Haptic Navigation in Volumetric Datasets. Second

PHANToM Users Research Symposium, Zurich, Switzerland, 2000.

[18] Basdogan C, Ho C, Srinivasan MA. Virtual Environments for Medical

Training: Graphical and Haptic Simulation of Laparoscopic Common Bile

Duct Exploration. IEEE/ASME Transactions on Mechatronics, Vol. 6, No. 3,

2001.

 170

[19] Bentley JL. Multidimensional binary search trees used for associative

searching. Communications of the ACM, 18, 9 (Sep. 1975), 509-517.

[20] Berkley J, Turkiyyah G, Berg D, Ganter M, Weghorst S. Real-Time Finite

Element Modeling for Surgery Simulation: An Application to Virtual Suturing.

IEEE Transactions on Visualization and Computer Graphics, 10(3), 1-12.

[21] Berti G, Fingberg J, Schmidt JG. An Interactive Planning and Simulation Tool

for Maxillo-Facial Surgery. Proceedings of Medical Robotics, Navigation, and

Visualization (MRNV) 2004.

[22] Bezdek JC, Hall LO, Clarke LP. Review of MRI Image Segmentation

Techniques Using Pattern Recognition. Medical Physics, vol. 20, no. 4, pp.

1033-1048.

[23] Bhat K, Twigg C, Hodgins J, Khosla P, Popovic Z, Seitz S. Estimating cloth

simulation parameters from video. In Proceedings of ACM

SIGGRAPH/Eurographics Symposium on Computer Animation (SCA) 2003.

[24] Bianchi G, Harders M, Székely G. Mesh Topology Identification for Mass-

Spring Models. Proceedings of Medical Image Computing and Computer-

Assisted Intervention (MICCAI) 2003, Montreal, Canada, November 2003.

[25] Bianchi G, Solenthaler B, Székely G, Harders M. Simultaneous Topology and

Stiffness Identification for Mass-Spring Models based on FEM Reference

Deformations. Proceedings of Medical Image Computing and Computer-

Assisted Intervention (MICCAI) 2004. St-Malo, France, November 2004.

 171

[26] Blevins NH, Jackler RK, Gralapp C. Temporal Bone Dissector. Mosby,

January 1998.

[27] Bourguignon D and Cani M-P. Controlling Anisotropy in Mass-Spring

Systems. Eurographics Workshop on Computer Animation and Simulation

(EGCAS), pages 113-123, August 2000.

[28] Bouvier DJ. Double-Time Cubes: A Fast 3D Surface Construction Algorithm

for Volume Visualization. Proceedings of the International Conference on

Imaging Science, Systems, and Technology, June 1997.

[29] Bowman D, Koller D, Hodges L. Travel in Immersive Virtual Environments:

an Evaluation of Viewpoint Motion Control Techniques. Proceedings of IEEE

Virtual Reality Annual International Symposium (VRAIS) 1997.

[30] Brelstaff G, Agus M, Giachetti A, Gobbetti E, Zanetti G, Zorcolo A, Picasso

B, Franceschini SS. Towards a psychophysical evaluation of a surgical

simulator for bone-burring. Proceedings of the Second Symposium on Applied

Perception in Graphics and Visualization. Pages 139-143. ACM Press, August

2005.

[31] Bridson R, Teran J, Molino N, Fedkiw R. Adaptive Physics Based Tetrahedral

Mesh Generation Using Level Sets. Engineering with Computers 21, 2-18

(2005).

[32] Brouwer I, Ustin J, Bentley L, Sherman A, Dhruv N, Tendick F. Measuring In

Vivo Animal Soft Tissue Properties for Haptic Modeling in Surgical

Simulation. Proceedings of Medicine Meets Virtual Reality (MMVR) 2001.

 172

[33] Brown J, Montgomery K, Latombe JC, Stephanides M. A Microsurgery

Simulation System. Medical Image Computing and Computer-Assisted

Intervention (MICCAI) 2001, Utrecht, The Netherlands, October 14-17, 2001.

[34] Bryan J, Stredney D, Wiet G, Sessanna D. Virtual Temporal Bone Dissection:

A Case Study. Proceedings of IEEE Visualization 2001, 497-500, October

2001.

[35] Bumm K, Wurm J, Rachinger J, Dannenmann T, Bohr C, Fahlbusch R, Iro H,

Nimsky C. An automated robotic approach with redundant navigation for

minimal invasive extended transsphenoidal skull base surgery. Minimally

Invasive Neurosurgery, 2005 Jun;48(3):159-64.

[36] CardioSkills, http://www.cardioskills.com/

[37] Cavusoglu MC, Goktekin TG, Tendick F, Sastry SS. GiPSi: An open

source/open architecture software development framework for surgical

simulation. Proceedings of MMVR, 2004:46-48.

[38] Choi K-S, Sun H, Heng P-A, Zou J. Deformable simulation using force

propagation model with finite element optimization. Computers & Graphics

28(4): 559-568 (2004).

[39] Clarke LP, Velthuizen RP, Camacho MA, Heine JJ, Vaidyanathan M, Hall LO,

Thatcher RW, Silbiger ML. MRI segmentation: methods and applications.

Magnetic Resonance Imaging. 1995;13(3):343-68.

[40] Cohen JD, Lin MC, Manocha D, Ponamgi M. I-COLLIDE: An Interactive and

Exact Collision Detection System for Large-Scaled Environments.

http://www.cardioskills.com/

 173

Proceedings of the ACM Symposium on Interactive 3D Graphics, pp. 189-196,

1995.

[41] Colgate JE and Brown JM. Factors Affecting the Z-Width of a Haptic Display.

Proceedings of the IEEE Conference on Robotics and Automation, San Diego,

CA, USA, May 1994.

[42] Conti F, Barbagli F, Morris D, Sewell C. CHAI: An Open-Source Library for

the Rapid Development of Haptic Scenes. Demo paper presented at the Joint

EuroHaptics Conference and Symposium on Haptic Interfaces for Virtual

Environment and Teleoperator Systems (WorldHaptics). Pisa, Italy, 2005

[43] Cotin S, Dawson SL, Meglan D, Shaffer DW, Farrell MA, Bardsley RS,

Morgan FM, Nagano T, Nikom J, Sherman P, Walterman MT, Wendlandt J.

ICTS: An Interventional Cardiology Training System. Proceedings of

Medicine Meets Virtual Reality, pages 59-65, January 2000.

[44] Cotin S, Delingette H, Ayache N. Real-time elastic deformations of soft

tissues for surgery simulation. IEEE Transactions on Visualization and

Computer Graphics, 5(1):62-73, January-March 1999.

[45] Cotin S, Shaffer D, Meglan D, Ottensmeyer M, Berry P, Dawson S. CAML: A

general framework for the development of medical simulation systems.

Proceedings of SPIE 4037:294-300.

[46] De Boeck J and Coninx K. Haptic Camera Manipulation: Extending the

―Camera in Hand Metaphor‖. Proceedings of EuroHaptics 2002.

 174

[47] De Boeck J, Cuppens E, De Weyer T, Raymaekers C, Coninx K. Multisensory

Interaction Metaphors with Haptics and Proprioception in Virtual

Environments. Proceedings of NordCHI 2004.

[48] De Boeck J, Raymaekers C, Coninx K. Expanding the Haptic Experience by

Using the PHANToM Device as a Camera Metaphor. Proceedings of the Sixth

Annual Meeting of the Phantom Users Group, 2001.

[49] De S, Kim J, Manivannan M, Srinivasan MA, Rattner D. Multimodal

Simulation of Laparoscopic Heller Myotomy Using a Meshless Technique.

Proceedings of Medicine Meets Virtual Reality (MMVR), pages 127-132,

Newport Beach, January 2002.

[50] De S, Kim J, Srinivasan MA. A Meshless Numerical Technique for Physically

Based Real Time Medical Simulations. Proceedings of Medicine Meets

Virtual Reality (MMVR), pages 113-118, Newport Beach, January 2001.

[51] Deussen O, Kobbelt L, Tücke P. Using Simulated Annealing to Obtain Good

Nodal Approximations of Deformable Bodies. Proc. Sixth Eurographics

Workshop on Simulation and Animation, September 1995, Maastricht.

[52] Dosis A, Bello F, Gillies D, Undre S, Aggarwal R, Darzi A. Laparoscopic task

recognition using Hidden Markov Models. Proceedings of Medicine Meets

Virtual Reality (MMVR) 2005, pp. 115-122.

[53] Duffy AJ, Hogle NJ, McCarthy H, Lew JI, Egan A, Christos P, Fowler DL.

Construct validity for the LAPSIM laparoscopic surgical simulator. Surgical

Endoscscopy, 2005 Mar;19(3):401-5.

 175

[54] Engum SA, Jeffries P, Fisher L. Intravenous catheter training system:

Computer-based education versus traditional learning methods. American

Journal of Surgery, July 2003, Vol. 186, No. 1.

[55] Etzmuss O, Gross J, Strasser W. Deriving a Particle System from Continuum

Mechanics for the Animation of Deformable Objects. IEEE Transactions on

Visualization and Computer Graphics, v.9 n.4, p.538-550, October 2003.

[56] Everett P, Seldin EB, Troulis M, Kaban LB, Kikinis R. A 3-D System for

Planning and Simulating Minimally-Invasive Distraction Osteogenesis of the

Facial Skeleton. Proceedings of Medical Image Computing and Computer-

Assisted Intervention (MICCAI) 2000: 1029-1039.

[57] Falk V, Mourgues F, Vieville T, Jacobs S, Holzhey D, Walther T, Mohr FW,

Coste-Maniere E. Augmented reality for intraoperative guidance in

endoscopic coronary artery bypass grafting. Surgical Technology

International, 2005;14:231-5.

[58] Feygin D, Keehner M, Tendick F. Haptic Guidance: Experimental Evaluation

of a Haptic Training Method for a Perceptual Motor Skill. Proceedings of the

10th IEEE Symposium on Haptic Interfaces for Virtual Environment and

Teleoperator Systems, 2002.

[59] Fisher S and Lin M. Fast Penetration Depth Estimation for Elastic Bodies

Using Deformed Distance Fields. IEEE/RSJ International Conference on

Intelligent Robots and Systems (IROS) 2001.

 176

[60] Garroway D and Hayward V. A Haptic Interface for Editing Space

Trajectories. Poster presented at ACM SIGGRAPH & EuroGraphics

Symposium on Computer Animation. August 2004.

[61] Georgii J, Echtler F, Westermann R. Interactive Simulation of Deformable

Bodies on GPUs. SimVis 2005: 247-258.

[62] Gettman MT, Blute ML. Critical comparison of laparoscopic, robotic, and

open radical prostatectomy: techniques, outcomes, and cost. Current Urology

Reports, 2006 May;7(3):193-9.

[63] Giachetti A, Agus M, Gobbetti E, Zanetti G. Blood, dust and mud for a

temporal bone surgical simulator. Proceedings of the 5th Conference of the

European Society of Mathematical and Theoretical Biology, July 2002.

[64] Gibson SF and Mirtich B. A survey of deformable models in computer

graphics. Technical Report TR-97-19, Mitsubishi Electric Research

Laboratories, Cambridge, MA, November 1997.

[65] Gibson SF, Samosky J, Mor A, Fyock C, Grimson W, Kanade T, Kikinis R,

Lauer H, McKenzie N, Nakajima S, Ohkami T, Osborne R, Sawada A.

Simulating arthroscopic knee surgery using volumetric object representations,

real-time volume rendering and haptic feedback. Proceedings of the First

Joint Conference on Computer Vision, Virtual Reality and Robotics in

Medicine and Medial Robotics and Computer-Assisted Surgery, p.369-378,

March 19-22, 1997.

 177

[66] Gillespie RB, O‘Modhrain M, Tang P, Zaretzky D, Pham C. The Virtual

Teacher. Proceedings of the 1998 ASME International Mechanical

Engineering Congress and Exposition, Anaheim, CA, USA, 1998.

[67] Gorman PJ, Meier AH, Rawn C, Krummel TM. The future of medical

education is no longer blood and guts, it is bits and bytes. American Journal of

Surgery. 2000 Nov. 180(5):353-356.

[68] Grantcharov TP, Carstensen L, Schulze S. Objective assessment of

gastrointestinal endoscopy skills using a virtual reality simulator. Journal of

the Society of Laparoendoscopic Surgeons. 2005 Apr-Jun;9(2):130-3.

[69] Grantcharov TP, Kristiansen VB, Bendix J, Bardram L, Rosenberg J, Funch-

Jensen P: Randomized clinical trial of virtual reality simulation for

laparoscopic skills training. British Journal of Surgery 2004, 91: 146-150.

[70] Gretarsdottir UO, Barbagli F, Salisbury JK. Phantom-X. EuroHaptics 2003,

Dublin, Ireland.

[71] Guerraz A, Loscos C, Widenfeld HR. How to use physical parameters coming

from the haptic device itself to enhance the evaluation of haptic benefits in user

interface. EuroHaptics 2003, Dublin, Ireland.

[72] Hachet M, Reuter P, Guitton P. Camera Viewpoint Control with the

Interaction Table. Proceedings of Virtual Reality International Conference

2003.

[73] Haluck RS, Gallagher AG, Satava RM, Webster R, Bass TL, Miller CA.

Reliability and validity of Endotower, a virtual reality trainer for angled

 178

endoscope navigation. Proceedings of Medicine Meets Virtual Reality

(MMVR) 2002.

[74] Haluck RS, Marshall RK, Krummel TM, Melkonian MG. Are surgery training

programs ready for virtual reality? Journal of the American College of

Surgeons. 2001 Dec. 193(6):660-665.

[75] Hariri S, Rawn C, Srivastava S, Youngblood P, Ladd A. Evaluation of a

surgical simulator for learning clinical anatomy. Medical Education, Volume

38, Issue 8, Page 896 - August 2004.

[76] Harwin WS and Melder N. Improved Haptic Rendering for Multi-Finger

Manipulation using Friction Cone based God-Objects. Proceedings of

EuroHaptics 2002, Edinburgh, UK.

[77] HavokFX, Havok, Inc., http://www.havok.com/

[78] Hayward V and Astley OR. Performance measures for haptic interfaces.

Proceedings of Robotics Research: 7th International Symposium, 1996.

[79] Hohne KH, Bomans M, Riemer M, Schubert R, Tiede U, Lierse W. A 3D

anatomical atlas based on a volume model. IEEE Visualization 1992, 12

(1992) 72-78.

[80] Ho-Le K. Finite element mesh generation methods: a review and

classification. Computer Aided Design, Vol 20(1), 27-38, 1988.

http://www.havok.com/

 179

[81] Holzman RS, Cooper JB, Gaba DM. Anesthesia crisis resource management:

real-life simulation training in operating room crises. Journal of Clinical

Anesthesiology, 1995 7:675–687.

[82] http://graphics.stanford.edu/data/3Dscanrep/

[83] http://tetgen.berlios.de/fformats.examples.html

[84] http://www.osc.edu/research/Biomed/vtbone/

[85] Hu T, Tholey G, Desai JP, and Castellanos AE. Evaluation of a laparoscopic

grasper with force feedback. Surgical Endoscopy, 2004 May;18(5):863-7.

[86] Huang J, Payandeh S, Doris P, Hajshirmohammadi I. Fuzzy classification:

towards evaluating performance on a surgical simulator. Proceedings of

Medicine Meets Virtual Reality (MMVR) 2005, pp. 194-200.

[87] Immersion Medical, http://www.immersion.com/medical/

[88] Ingber L. Adaptive simulated annealing (ASA): lessons learned. Control and

Cybernetics, 25, 33–54, 1995.

[89] Ingber, L. ASA-26.14. 2006. http://www.ingber.com/#ASA

[90] James D and Pai D. ARTDEFO: Accurate real time deformable objects.

Proceedings of ACM SIGGRAPH 1999, 65–72.

[91] James D and Twigg CD. Skinning Mesh Animations. ACM Transactions on

Graphics (SIGGRAPH 2005), Vol. 24, No. 3, August 2005.

http://graphics.stanford.edu/data/3Dscanrep/
http://tetgen.berlios.de/fformats.examples.html
http://www.osc.edu/research/Biomed/vtbone/
http://www.immersion.com/medical/
http://www.ingber.com/#ASA

 180

[92] Jones MG, Bokinsky A, Tretter T, Negishi A. A Comparison of Learning with

Haptic and Visual Modalities. Haptics-e, Vol. 3, No. 6, 2005.

[93] Judkins TN, Oleynikov D, Narazaki K, Stergiou N. Robotic surgery and

training: electromyographic correlates of robotic laparoscopic training.

Surgical Endoscopy, 2006, May;20(5):824-9.

[94] Kazi A. Operator performance in surgical telemanipulation. Presence, vol.

10, pp. 495-510, 2001.

[95] Keeve E, Girod S, Kikinis R, Girod B. Deformable modeling of facial tissue

for craniofacial surgery simulation. Computer Aided Surgery, 1998, 3:228–38.

[96] Keeve E, Pfeifle P, Girod B, Girod S. Anatomy Based Facial Tissue Modeling

Using the Finite Element Method. Proceedings of the IEEE Conference on

Visualization, 1996, pp 21-28.

[97] Kerdok AE, Cotin SM, Ottensmeyer MP, Galea AM, Howe RD, Dawson SL.

Truth cube: establishing physical standards for soft tissue simulation. Medical

Image Analysis. 2003 Sep;7(3):283-91.

[98] Kim L, Sukhatme G, Desbrun M. A haptic rendering technique based on

hybrid surface representation. IEEE Computer Graphics and applications,

March 2004.

[99] Kirkpatrick AE and Douglas SA. Application-based Evaluation of Haptic

Interfaces. 10th IEEE Haptics Symposium, 2002, Orlando, USA.

 181

[100] Kirkpatrick S, Gelatt CD, Vecchi MP. Optimization by Simulated Annealing.

Science, Vol 220, Number 4598, pages 671-680, 1983.

[101] Koch RM, Roth SHM, Gross MH, Zimmermann AP, Sailer HF. A Framework

for Facial Surgery Simulation. Proceedings of the 18th Spring Conference on

Computer Graphics, p33–42, 2002.

[102] Korb W, Kornfeld M, Birkfellner W, Boesecke R, Figl M, Fuerst M,

Kettenbach J, Vogler A, Hassfeld S, Kornreif G. Risk analysis and safety

assessment in surgical robotics: A case study on a biopsy robot. Minimally

Invasive Therapy & Allied Technologies, 2005;14(1):23-31.

[103] Kry PG, James DL, Pai DK. EigenSkin: Real Time Large Deformation

Character Skinning in Hardware. Proceedings of ACM SIGGRAPH 2002

Symposium on Computer Animation.

[104] Lawrence DA, Pao LY, Dougherty AM, Salada MA, and Pavlou Y. Rate-

Hardness: a New Performance Metric for Haptic Interfaces. IEEE

Transactions on Robotics and Automation, 16(4): 357-371, Aug. 2000.

[105] Lindblad AJ, Turkiyyah GM, Weghorst SJ, Berg D. Real-Time Finite Element

Based Virtual Tissue Cutting. Proceedings of Medicine Meets Virtual Reality

(MMVR) 2006, 24-27 January 2006, Long Beach, CA.

[106] Litofsky NS, Bauer AM, Kasper RS, Sullivan CM, Dabbous OH. Image-

guided resection of high-grade glioma: patient selection factors and outcome.

Neurosurgical Focus, 2006, Apr 15;20(4):E16.

 182

[107] Lorensen WE and Cline HE. Marching Cubes: A high resolution 3D surface

construction algorithm. ACM SIGGRAPH 1987, 21:163–169.

[108] Luring C, Bathis H, Tingart M, Perlick L, Grifka J. Computer assistance in

total knee replacement - a critical assessment of current health care technology.

Computer Aided Surgery, 2006, Mar;11(2):77-80.

[109] Maintz JB and Viergever MA. A survey of medical image registration.

Medical Image Analysis. 1998 Mar;2(1):1-36.

[110] Massie TH and Salisbury JK. The PHANTOM Haptic Interface: A Device for

Probing Virtual Objects. Symposium on Haptic Interfaces for Virtual

Environments. Chicago, IL, Nov. 1994.

[111] Matlab 7.0 (R14). The MathWorks, Inc., Natick, MA.

http://www.mathworks.com/

[112] Mauch S. Closest Point Transform (open-source software):

http://www.acm.caltech.edu/~seanm/projects/cpt/cpt.html

[113] Mauch S. Efficient Algorithms for Solving Static Hamilton-Jacobi Equations.

PhD thesis, 2003.

[114] McDougall EM, Corica FA, Boker JR, Sala LG, Stoliar G, Borin JF, Chu FT,

Clayman RV. Construct validity testing of a laparoscopic surgical simulator.

Journal of the American College of Surgeons. 2006 May;202(5):779-87.

[115] McInerney T and Terzopoulos D. Deformable models in medical image

analysis: a survey. Medical Image Analysis, vol. 1, no. 2, 1996/1997, 91-108.

http://www.mathworks.com/
http://www.acm.caltech.edu/~seanm/projects/cpt/cpt.html

 183

[116] McNeely WA, Puterbaugh KD, and Troy JJ. Six degree-of-freedom haptic

rendering using voxel sampling. Proceedings of ACM SIGGRAPH 1999,

pages 401-408.

[117] McNeely WA, Puterbaugh KD, Troy JJ. Voxel-Based 6-DOF Haptic

Rendering Improvements. Haptics-e, vol. 3, 2006.

[118] Meehan M, Morris D, Maurer C, Antony A, Barbagli F, Salisbury K, and

Girod S. Virtual 3D Planning and Guidance of Mandibular Distraction

Osteogenesis. Computer Aided Surgery, Volume 11, Number 2, p51-62,

March 2006.

[119] Meglan DA, Raju R, Merril GL, Merril JR, Nguyen BH, Swamy SN, Higgins

GA. The Teleos virtual environment toolkit for simulation-based surgical

education. Proceedings of MMVR, 1996:346-51.

[120] Melvin WS, Dundon JM, Talamini M, Horgan S. Computer-enhanced robotic

telesurgery minimizes esophageal perforation during Heller myotomy.

Surgery, 2005 Oct;138(4):553-8; discussion 558-9.

[121] Mendoza C and Laugier C. Simulating soft tissue cutting using finite element

models. Proceedings of the International Conference on Robotics and

Automation (ICRA) 2003: 1109-1114.

[122] Mohr CJ, Nadzam GS, Curet MJ. Totally robotic Roux-en-Y gastric bypass.

Archives of Surgery, 2005 Aug;140(8):779-86.

 184

[123] Montgomery K, Bruyns C, Wildermuth S, Heinrichs L, Hasser C, Ozenne S,

Bailey D. Surgical Simulator for Operative Hysteroscopy. IEEE Visualization

2001, San Diego, California, October 14-17, 2001.

[124] Montgomery K, Heinrichs L, Bruyns C, Wildermuth S, Hasser C, Ozenne S,

and Bailey D. Surgical Simulator for Hysteroscopy: A Case Study of

Visualization in Surgical Training. 12th IEEE Visualization Conference, San

Diego, CA, 2001, pp. 449-452.

[125] Morgenbesser HB and Srinivasan MA. Force shading for haptic shape

perception. Proceedings of ASME Dynamic Systems and Control Division,

(DSC-Vol.58): 407-412, 1996.

[126] Morris D, Girod S, Barbagli F, Salisbury K. An Interactive Simulation

Environment for Craniofacial Surgical Procedures. Proceedings of MMVR

(Medicine Meets Virtual Reality) XIII, Long Beach, CA. Studies in Health

Technology and Informatics, Volume 111, 2005.

[127] Morris D, Sewell C, Barbagli F, Blevins N, Girod S, and Salisbury K.

Visuohaptic Simulation of Bone Surgery for Training and Evaluation. To

appear in IEEE Computer Graphics and Applications, November 2006.

[128] Morris D, Sewell C, Blevins N, Barbagli F, and Salisbury K. A Collaborative

Virtual Environment for the Simulation of Temporal Bone Surgery.

Proceedings of MICCAI (Medical Image Computing and Computer-Aided

Intervention) VII, Rennes, France, September 26-30 2004. Springer-Verlag

Lecture Notes in Computer Science Volumes 3216 and 3217.

 185

[129] Morris D, Tan HZ, Barbagli F, Chang T, Salisbury K. Haptic Training

Enhances Force Skill Learning. In review, August 2006.

[130] Morris D. Automatic Preparation, Calibration, and Simulation of Deformable

Objects. Stanford University Department of Computer Science Technical

Report 2006-07, August 2007.

[131] Morris D. TG2: A software package for behavioral neurophysiology and

closed-loop spike train decoding. Technical documentation, 2006. Available

at http://cs.stanford.edu/~dmorris/projects/tg2_description.pdf .

[132] Morris D. Algorithms and Data Structures for Haptic Rendering: Curve

Constraints, Distance Maps, and Data Logging. Stanford University

Department of Computer Science Technical Report 2006-06, June 2006.

[133] Mosegaard J and Sørensen TS. GPU Accelerated Surgical Simulators for

Complex Morphology. Proceedings of IEEE Virtual Reality 2005.

[134] Mosegaard J, Herborg P, Sørensen TS. A GPU Accelerated Spring Mass

System for Surgical Simulation. Proceedings of Medicine Meets Virtual

Reality (MMVR) 13, 2005.

[135] Mosegaard J. Parameter Optimisation for the Behaviour of Elastic Models

over Time. Proceedings of Medicine Meets Virtual Reality 12, 2004.

[136] Mount DM and Arya S. ANN: A library for approximate nearest neighbor

searching. CGC 2nd Annual Fall Workshop on Computational Geometry,

1997. Available at http://www.cs.umd.edu/~mount/ANN .

http://cs.stanford.edu/~dmorris/projects/tg2_description.pdf
http://www.cs.umd.edu/~mount/ANN

 186

[137] Mueller M and Teschner M. Volumetric Meshes for Real-Time Medical

Simulations. Proc. BVM ‘03, Erlangen, Germany, pp. 279-283, March 2003.

[138] Munich M and Perona P. Continuous Dynamic Time Warping for Translation-

Invariant Curve Alignment with Applications to Signature Verification.

Proceedings of the 7th IEEE Conference on Computer Vision, Kerkyra,

Greece, 1999.

[139] Nakadi IE, Melot C, Closset J, DeMoor V, Betroune K, Feron P, Lingier P,

Gelin M. Evaluation of da Vinci Nissen fundoplication clinical results and

cost minimization. World Journal of Surgery, 2006, Jun;30(6):1050-4.

[140] Neumann P, Siebert D, Faulkner G, Krauss M, Schulz A, Lwowsky C,

Tolxdorff T. Virtual 3D Cutting for Bone Segment Extraction in Maxillofacial

Surgery Planning. Proceedings of Medicine Meets Virtual Reality (MMVR)

1999.

[141] Nicolau SA, Pennec X, Soler L, Ayache N. A complete augmented reality

guidance system for liver punctures: first clinical evaluation. Medical Image

Computing and Computer-Assisted Intervention (MICCAI), 2005;8(Pt 1):539-

47.

[142] Nienhuys H-W and van der Stappen AF. A surgery simulation supporting cuts

and finite element deformation. Proceedings of Proceedings of Medical Image

Computing and Computer Assisted Intervention (MICCAI) 2001.

[143] NVIDIA Corporation. nvtristrip library. February 2004.

http://developer.nvidia.com/ .

http://developer.nvidia.com/

 187

[144] Nvidia tutorial: http://developer.nvidia.com/object/skinning.html

[145] Ojakangas CL, Shaikhouni A, Friehs GM, Caplan AH, Serruya MD, Saleh M,

Morris DS, Donoghue JP. Decoding movement intent from human premotor

cortex neurons for neural prosthetic applications. To appear in the Journal of

Clinical Neurophysiology, 2006.

[146] Ost D, DeRosiers A, Britt EJ, Fein AM, Lesser ML, and Mehta AC.

Assessment of a Bronchoscopy Simulator. American Journal of Respiratory

and Critical Care Medicine, Volume 164, Number 12, December 2001, 2248-

2255.

[147] Pai DK, Lang J, Lloyd JE, and Woodham RJ. ACME, A Telerobotic Active

Measurement Facility. Proceedings of the Sixth International Symposium on

Experimental Robotics, Sydney, Australia, March 1999.

[148] Pai DK, van den Doel K, James DL, Lang J, Lloyd JE, Richmond JL, and Yau

SH. Scanning Physical Interaction Behavior of 3D Objects. Computer

Graphics (ACM SIGGRAPH 2001 Conference Proceedings), August 2001.

[149] Pal NR and Pal SK. A review on image segmentation techniques. Pattern

Recognition, vol. 26, no. 9, pp. 1277-1294, 1993.

[150] Patton JL and Mussa-Ivaldi FA. Robot-Assisted Adaptive Training: Custom

Force Fields for Teaching Movement Patterns. IEEE Transactions on

Biomedical Engineering, Vol. 51, No. 4, 2004.

[151] Petersik A, Pflesser B, Tiede U, Höhne KH, Leuwer R, Rudolf Leuwer.

Realistic haptic volume interaction for petrous bone surgery simulation.

http://developer.nvidia.com/object/skinning.html

 188

Proceedings of Computer Assisted Radiology and Surgery (CARS) 2002.

Springer-Verlag, Berlin, 2002, 252-257.

[152] Petersik A, Pflesser B, Tiede U, Höhne KH, Leuwer R. Realistic Haptic

Interaction in Volume Sculpting for Surgery Simulation. Proceedings of

Surgery Simulation and Soft Tissue Modeling (IS4TM) 2003. Springer-Verlag

Lecture Notes in Computer Science 2673, Springer-Verlag, Berlin, 2003, 194-

202.

[153] Petersik A, Pflesser B, Tiede U, Höhne KH, Leuwer R. Haptic volume

interaction with anatomic models at sub-voxel resolution. 10th IEEE

Symposium on Haptic Interfaces for Virtual Environment and Teleoperator

Systems. Orlando, FL, 2002, 66-72.

[154] Petrakis EGM, Diplaros A, Milios EE. Matching and Retrieval of Distorted

and Occluded Shapes Using Dynamic Programming. IEEE Transactions on

Pattern Analysis and Machine Intelligence, Vol. 24, No. 11, 2002.

[155] Pflesser B, Petersik A, Tiede U, Hohne KH, Leuwer R. Volume cutting for

virtual petrous bone surgery. Computer Aided Surgery 2002;7(2):74-83.

[156] PhysX, Ageia, http://www.ageia.com/

[157] Pintilie G and McInerney T. Interactive Cutting of the Skull for Craniofacial

Surgical Planning. IASTED International Conference Biomedical Engineering

2003 (BioMed2003), Salzberg, Austria, June 2003.

http://www.ageia.com/

 189

[158] Pausch R, Burnette T, Brockway D, Weiblen M. Navigation and Locomotion

in Virtual Worlds via Flight into Hand-Held Miniatures. Proceedings of ACM

SIGGRAPH 1995.

[159] Raymaekers C, De Boeck J, Coninx K. An Empirical Approach for the

Evaluation of Haptic Algorithms. IEEE World Haptics 2005, Pisa, Italy.

[160] Renz M, Preusche C, Potke M, Kriegel HP, Hirzinger G. Stable haptic

interaction with virtual environments using an adapted voxmap-pointshell

algorithm. Proceedings of Eurohaptics, p149-154, 2001.

[161] Reznek MA, Rawn CL, and Krummel TM. Evaluation of the Educational

Effectiveness of a Virtual Reality Intravenous Insertion Simulator. Academic

Emergency Medicine (abstract) 2002, 9(11): 1319-1325.

[162] Richards C, Rosen J, Hannaford B, Pellegrini C, Sinanan M. Skills evaluation

in minimally invasive surgery using force/torque signatures. Surgical

Endoscopy. 2000, 14: 791-798.

[163] Rosen J, Hannaford B, Richards CG, Sinanan MN. Markov modeling of

minimally invasive surgery based on tool/tissue interaction and force/torque

signatures for evaluating surgical skills. IEEE Transactions on Biomedical

Engineering. 2001, 48(5): 579-591.

[164] Rosen J, Solazzo M, Hannaford B, Sinanan M. Objective laparoscopic skills

assessments of surgical residents using Hidden Markov Models based on

haptic information and tool/tissue interactions. Proceedings of Medicine Meets

Virtual Reality (MMVR) 2001.

 190

[165] Ruffaldi E, Morris D, Edmunds T, Barbagli F, and Pai DK. Standardized

Evaluation of Haptic Rendering Systems. Proceedings of the 14th IEEE

Haptics Symposium, March 2006, Washington, DC.

[166] Sakata S. Asamin 1.30. 2006.

http://www.econ.ubc.ca/ssakata/public_html/software/

[167] Sakoe H and Chiba S. Dynamic programming algorithm optimization for

spoken word recognition. IEEE Transactions on Acoustics, Speech, and

Signal Processing, 27(1):43—49, 2004.

[168] Samani A, Bishop J, Luginbuhl C, Plewes DB. Measuring the elastic modulus

of ex vivo small tissue samples. Physics in Medicine and Biology, 48, July

2003.

[169] Scharstein D and Szeliski R. A Taxonomy and Evaluation of Dense Two-

Frame Stereo Correspondence Algorithms. International Journal of Computer

Vision, 47(1/2/3):7-42, April-June 2002.

[170] Schmidt JG, Berti G, Fingberg J, Cao J, Wollny G. A Finite Element Based

Tool Chain for the Planning and Simulation of Maxillo-Facial Surgery.

Proceedings of the fourth ECCOMAS, Jyvaskyla, Finland, 2004.

[171] Schneider P and Eberly DH. Geometric Tools for Computer Graphics.

Morgan-Kauffman, 2003. Relevant source:

http://www.geometrictools.com/Foundation/Distance/Wm3DistVector3Segment3.cpp

http://www.geometrictools.com/Foundation/Distance/Wm3DistVector3Triangle3.cpp

http://www.econ.ubc.ca/ssakata/public_html/software/
http://www.geometrictools.com/Foundation/Distance/Wm3DistVector3Segment3.cpp
http://www.geometrictools.com/Foundation/Distance/Wm3DistVector3Triangle3.cpp

 191

[172] Sederberg TW and Parry SR. Free-Form Deformation of Solid Geometric

Models. Proceedings of SIGGRAPH ‘86, Computer Graphics 20, 4 (August

1986), 151-159.

[173] SensAble Technologies, Inc. OpenHaptics toolkit. http://www.sensable.com

[174] SenseGraphics AB. H3D API. http://www.h3d.org/

[175] Sethian JA. A fast marching level set method for monotonically advancing

fronts. Proceedings of the National Academy of Sciences, volume 93 of 4,

pages 1591-1595, 1996.

[176] Sewell C, Morris D, Blevins N, Barbagli F, and Salisbury K. A Simulator for

Training a Full Mastoidectomy Procedure. Demo paper presented at IEEE

World Haptics, Pisa, Italy, March 2005.

[177] Sewell C, Morris D, Blevins N, Barbagli F, and Salisbury K. Achieving Proper

Exposure in Surgical Simulation. Proceedings of MMVR (Medicine Meets

Virtual Reality) XIV, Long Beach, CA, January 2006. Studies in Health

Technology and Informatics, Volume 119.

[178] Sewell C, Morris D, Blevins N, Barbagli F, and Salisbury K. An Event-Driven

Framework for the Simulation of Complex Surgical Procedures. Proceedings

of MICCAI (Medical Image Computing and Computer-Aided Intervention) VII,

Rennes, France, September 26-30 2004. Springer-Verlag Lecture Notes in

Computer Science Volumes 3216 and 3217.

[179] Sewell C, Morris D, Blevins N, Barbagli F, and Salisbury K. Quantifying

Risky Behavior in Surgical Simulation. Proceedings of MMVR (Medicine

http://www.sensable.com/
http://www.h3d.org/

 192

Meets Virtual Reality) XIII, Long Beach, CA, January 2005. Studies in Health

Technology and Informatics, Volume 111.

[180] Seymour NE, Gallagher AG, Roman SA, O'Brien MK, Bansal VK, Andersen

DK, Satava RM. Virtual reality training improves operating room

performance. Annals of Surgery 2002, 236(4): 458-464.

[181] Si H. TetGen, A Quality Tetrahedral Mesh Generator and Three-Dimensional

Delaunay Triangulator, v1.3 User's Manual. Weierstrass Institute for Applied

Analysis and Stochastics, Technical Report No. 9, 2004.

[182] SimBionix, http://www.simbionix.com

[183] SimSurgery, http://www.simsurgery.com/

[184] Srimathveeravalli G and Thenkurussi K. Motor Skill Training Assistance

Using Haptic Attributes. Proceedings of the First Joint EuroHaptics

Conference and Symposium on Haptic Interfaces for Virtual Environment and

Teleoperator Systems (WorldHaptics), Pisa, Italy, 2005.

[185] Srivastava S, Youngblood P, Rawn C, Hariri S, Heinrichs L, Ladd A. Initial

evaluation of a shoulder arthroscopy simulator: Establishing construct validity.

Journal of Shoulder & Elbow Surgery, Mar-Apr; 13(2): 196-205.

[186] Stam J. Real-Time Fluid Dynamics for Games. Proceedings of the Game

Developer Conference, March 2003.

http://www.simbionix.com/
http://www.simsurgery.com/

 193

[187] Stoakley R, Conway M, Pausch R. Virtual Reality on a WIM: Interactive

Worlds in Miniature. Proceedings of the ACM Conference on Human Factors

in Computing Systems (CHI) 1995.

[188] Stoev S and Schmalstieg D. Application and Taxonomy of Through-the-Lens

Techniques. Proceedings of the ACM Symposium on Virtual Reality Software

and Technology (VRST), 2002.

[189] Sud A, Otaduy M, Manocha D. DiFi: Fast 3D Distance Field Computation

Using Graphics Hardware. Eurogrpahics 2004.

[190] Sudarsanam N, Grimm C, Singh K. Intuitive tools for camera manipulation.

Technical Report 2004-84, Washington University in St. Louis, 2004.

[191] Surgical Science, http://www.surgical-science.com/

[192] Tan D, Robertson G, Czerwinski M. Exploring 3D Navigation: Combining

Speed-coupled Flying with Orbiting. Proceedings of the Conference on

Human Factors in Computing Systems (CHI) 2001.

[193] Tan HZ. Identification of sphere size using the PHANToM: Towards a set of

building blocks for rendering haptic environments. Proceedings of the ASME

Annual Meeting, Vol. 61, Nov 1997.

[194] Tay B, Stylopoulos N, De S, Rattner DW, Srinivasan MA. Measurement of

In-vivo Force Response of Intra-abdominal Soft Tissues for Surgical

Simulation. Proceedings of Medicine Meets Virtual Reality, pages 514-519,

Newport Beach, January 2002.

http://www.surgical-science.com/

 194

[195] Tejada E and Ertl T. Large Steps in GPU-based Deformable Bodies

Simulation. Simulation Theory and Practice, Special Issue on Special Issue on

Programmable Graphics Hardware. 2005.

[196] Teschner M, Girod S, Girod B. Interactive Osteotomy Simulation and Soft-

Tissue Prediction. Proceedings of Vision, Modeling, and Visualization (VMV)

1999. Erlangen, Germany, pp. 405-412, Nov. 1999.

[197] Teschner M, Girod S, Girod B. Interactive Simulation Environment for

Craniofacial Surgery Planning. Proceedings of Computer Assisted Radiology

and Surgery (CARS) 2000. San Francisco, USA, pp. 51-56, June 28 - July 1,

2000.

[198] Teschner M, Girod S, Girod B. Optimization Approaches for Soft-Tissue

Prediction in Craniofacial Surgery Simulation. Proceedings of Medical Image

Computing and Computer-Assisted Intervention (MICCAI) 1999. Cambridge,

England, pp. 1183-1190, Sep. 19-23, 1999.

[199] Teschner M, Heidelberger B, Mueller M, Gross M. A Versatile and Robust

Model for Geometrically Complex Deformable Solids. Proceedings of

Computer Graphics International (CGI'04), Crete, Greece, pp. 312-319, June

16-19, 2004.

[200] Tholey G, Desai J, Castellanos A. Force Feedback Plays a Significant Role in

Minimally Invasive Surgery. Annals of Surgery, Vol. 241, No. 1, 2005.

[201] Thrane N and Simonsen LO. A comparison of acceleration structures for GPU

assisted ray tracing. Master‘s thesis, University of Aarhus, Denmark, 2005

 195

[202] Trichili H, Bouhlel MS, Kammoun F. A review and evaluation of medical

image segmentation using methods of optimal filtering. Journal of Testing and

Evaluation, vol. 31, no. 5, pp. 398-404, 2003.

[203] Van Gelder A. Approximate Simulation of Elastic Membranes by Triangle

Meshes. Journal of Graphics Tools,3:21--42, 1998, 178-180.

[204] Van Sickle KR, McClusky DA 3rd, Gallagher AG, Smith CD. Construct

validation of the ProMIS simulator using a novel laparoscopic suturing task.

Surgical Endosccopy 2005; 19: 1227-1231.

[205] Varadhan G, Krishnan S, Sriram T, Manocha D. Topology Preserving Surface

Extraction Using Adaptive Subdivision. Eurographics Symposium on

Geometry Processing, 2004.

[206] Wagner C, Stylopoulos N, Howe R. The Role of Force Feedback in Surgery:

Analysis of Blunt Dissection. Proceedings of the 10th IEEE Symposium on

Haptic Interfaces for Virtual Environment and Teleoperator Systems, March

2002.

[207] Wang T, Darzi A, Foale R, and Schilling R. Virtual Reality Permanent Pacing:

Validation of a Novel Computerized Permanent Pacemaker Implantation

Simulator. Journal of the American College of Cardiology (Supplement)

2001; 37(2): 493A-494A.

[208] Ware C and Osborne S. Exploration and Virtual Camera Control in Virtual

three Dimensional Environments. Proceedings of the 1990 symposium on

Interactive 3D Graphics (I3D).

 196

[209] Webster R, Haluck RS, Zoppetti G, Benson A, Boyd J, Charles N, Reeser J,

Sampson S. A Haptic Surgical Simulator for Laparoscopic Cholecystectomy

using Real-time Deformable Organs. Proceedings of the IASTED

International Conference Biomedical Engineering. June 25-27, 2003,

Salzburg, Austria, 2003.

[210] Webster RW, Haluck R, Mohler B, Ravenscroft R, Crouthamel E, Frack T,

Terlecki S, Sheaffer J. Elastically deformable 3d organs for haptic surgical

simulators. In Proceedings of Medicine Meets Virtual Reality (MMVR) 2002.

[211] Williams RL, Srivastava M, Conaster R, Howell JN. Implementation and

Evaluation of a Haptic Playback System. Haptics-e, Vol. 3, No. 3, May 3,

2004.

[212] Wong T, Darzi A, Foale R, Schilling RJ. Virtual reality permanent pacing:

validation of a novel computerized permanent pacemaker implantation

simulator. Journal of the American College of Cardiology 2001;

(Suppl)37(2):493A-4A.

[213] Xitact, http://www.xitact.com/

[214] Yokokohji Y, Hollis R, Kanade T. Toward Machine Mediated Training of

Motor Skills: Skill Transfer from Human to Human via Virtual Environment.

1996. Proceedings of the 5th IEEE International Workshop on Robot and

Human Communication.

[215] Youngblood P, Srivastava S, Curet M, Heinrichs W, Dev P, Wren S.

Comparison of training on two laparoscopic simulators and assessment of

http://www.xitact.com/

 197

skills transfer to surgical performance. Journal of the American College of

Surgeons, Volume 200, Issue 4, Pages 546-551. April 2005.

[216] Zeleznik R and Forsberg A. UniCam – 2D Gestural Camera Controls for 3D

Environments. Proceedings of the 1999 Symposium on Interactive 3D

Graphics (I3D).

[217] Zhang H. Mesh Generation for Voxel-Based Objects, PhD Thesis, West

Virginia University, 2005.

[218] Zilles CB and Salisbury JK. A Constraint-based God-object Method for

Haptic Display. International Conference on Intelligent Robots and Systems,

1995.

