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Abstract. This paper presents several new metrics related to bone removal and 
suctioning technique in the context of a mastoidectomy simulator.  The expertise 

with which decisions as to which regions of bone to remove and which to leave 
intact is evaluated by building a Naïve Bayes classifier using training data from 

known experts and novices.  Since the bone voxel mesh is very large, and many 

voxels are always either removed or not removed regardless of expertise, the 
mutual information was calculated for each voxel and only the most informative 

voxels used for the classifier.  Leave-out-one cross validation showed a high 

correlation of calculated expert probabilities with scores assigned by instructors.  

Additional metrics described in this paper include those for assessing smoothness 

of drill strokes, proper drill burr selection, sufficiency of suctioning, two-handed 

tool coordination, and application of appropriate force and velocity magnitudes as 

functions of distance from critical structures. 
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Introduction 

In order to move towards the goal of enabling simulators to serve as intelligent, mostly-

autonomous virtual instructors of surgical skill, we have previously proposed [1, 2] a 

number of metrics intended to capture some of the most important aspects of good 

technique that a real instructor tries to teach his/her residents in the field of temporal 

bone surgery, using our simulator [3].  In this paper we present several new metrics 

related to bone removal and suctioning technique. 

Most existing surgical simulators, especially laparoscopic skill trainers, have 

attempted to incorporate a small number of simple metrics [4].  Most assume a simple 

global optimum value, such as minimize wall collisions, maximize path efficiency, or 

minimize completion time, and do not attempt to learn from runs of the simulators by 

experts or novices.  Several have used learning algorithms such as Markov Models [5] 

or neural nets [6] to evaluate surgical performance.   

1. Naïve Bayes Classifier for Removed Bone Voxels 

One of the most obvious criteria for the evaluation of a mastoidectomy, a procedure in 

which part of the temporal bone is drilled away in order to access the inner ear, is 



whether correct decisions were made as to which regions of bone to remove and which 

to leave intact.  A simple method is to have an instructing surgeon label which regions 

should and should not be removed, or to automatically label the voxels (used as the 

underlying representation of the bone volume in our simulator) drilled away by the 

instructor, and then compare the set of voxels removed by the trainee to this model.  

However, there is not necessarily a single correct technique; different experts may 

make somewhat different choices as to which bone to remove, and a given expert may 

vary somewhat between runs.  In addition, not all regions are of equal importance; in 

some regions, it does not matter much exactly what is removed, while the choices may 

be much more critical in other areas, especially near nerves and other critical structures. 

Thus, similar to how many e-mail spam classification algorithms assume that 

words from a dictionary are chosen for an e-mail message according to separate 

distributions by spammers and non-spammers [7], we have made an assumption that 

voxels from the full voxel mesh are chosen for removal according to separate 

distributions for experts and novices.  We have implemented a Naïve Bayes classifier 

that calculates the maximum likelihood estimates for the probabilities that each voxel is 

removed by an expert and by a novice, and uses these to determine the probabilities 

that a given mastoidectomy was performed by an expert or by a novice.   

If y∈{0,1} are the class labels (0 = novice, 1 = expert), there are n voxels in the 

temporal bone model, and x∈{0,1}
n
 is an n-dimensional vector encoding whether each 

of the n voxels was (1) or was not (0) removed in a particular simulator run, then, 

making the Naïve Bayes assumption that the xi’s are conditionally independent given y,  

the probability of a particular set of choices for removal or non-removal for each voxel, 

given the class which generated it, can be written 

∏
=

=
n

i

i yxpyp
1

)|()|(x  

The model is parameterized by φi|y=k = p(xi=1 | y=k), the probabilities for each 

voxel i that it is removed in a run performed by a member of class y=k, and φy, = 

p(y=1), the prior probability that a run was performed by an expert (y=1).  We assume 

no prior probabilities, so we set φy =1/2.  Given a set of m training examples, the 

maximum likelihood estimates for the other parameters, using Laplace smoothing 

(adding one phantom example that removes every voxel and one that removes none in 

each class, so as to avoid zero probabilities for any voxel), and denoting 1{s} as the 

function that returns 1 if s is true and 0 if s is false, are simply the fractions of examples 

in each class in which the voxels were removed: 
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Then, given a new set x of voxel removal choices, the probability that this was 

generated by an expert can be estimated using Bayes’ Rule as: 
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However, since the bone mesh is so large, and so many voxels are likely to not be 

very informative (i.e., will almost always be removed or not be removed, regardless of 

the subject's expertise), we calculated the mutual information (equivalent to a 

Kullback-Leibler divergence) for each voxel and built the classifier using only the 

n=1000 most informative voxels.  The mutual information between each voxel xi and 

the class labels y was calculated as 
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with each of the probabilities estimated using their empirical distributions in the 

training set. 

We then evaluated this metric by performing leave-one-out cross validation with 

our classifier.  There was a statistically significant correlation (r = 0.740, p<0.00001) 

between the calculated probability estimates and a one-to-five subjective global score 

assigned by an instructing surgeon who watched video replays of the procedures 

(Figure 1). 

 

 
Figure 1. Correlation between instructor-assigned score and calculated probability of being in expert class. 

 

This metric, along with all of our others, has been incorporated into our metrics 

console.  When the simulator is run, all of the data is logged and can then be rendered 



to video or loaded into the console, which computes metric scores and provides a 

number of visualizations intended to help the user highlight potential problem areas.  

The user can be shown red dots at the locations of each voxel he/she removed for 

which the expert removal probability was below a specified threshold value (Figure 2, 

left), or red dots for each voxel not removed for which the expert removal probability 

was above a specified threshold value (Figure 2, right).  The percentage of low-expert-

probability voxels removed can be plotted at specified intervals on a timeline, allowing 

the user to quickly fast-forward to mistakes.  

 

 

   
Figure 2. At left, improperly removed voxels shown in red.  At right, improperly remaining voxels in red. 

 

This analysis can also yield an interesting visualization of the most informative 

voxels, which provides useful insight into the regions of bone most likely to be 

removed by experienced surgeons but left by novices and vice versa.  In Figure 3, the 

1000 most informative voxels (based on the training data) are shown.  Those more 

likely to be removed by experts are in gray (brighter corresponds to greater expert-

novice discrepancy), while those more likely to be removed by novices are in red.  

There are more voxels of the former case presumably due to greater uniformity among 

experts than among novices.   

 

 

 
Figure 3. The 1000 most informative voxels (likely expert removals in gray, likely novice removals in red). 



2. Other Metrics for Drilling Technique 

Another key indicator of surgical skill is the exhibition of “purposeful” movements in 

drilling.  An expert will almost invariably work locally, accomplishing a specific sub-

goal (such as exposing a certain structure), and then move on to another task, and make 

smooth, continuous motions with the drill.  A novice, on the other hand, is more likely 

to move around haphazardly without recognition for the localized subtasks that should 

be completed.  Therefore, we have included a metric that reports the frequency of drill 

“jumps”: the number of removed voxels per thousand that were more than a specified 

distance away from the previously removed voxel.     

It is also important for a surgeon to know when to use each of his/her tools.  In our 

simulator, the user can switch between 6mm and 3mm drill burrs.  The smaller burr is 

intended for use near delicate structures, while the larger burr allows for quicker 

drilling in safer areas.  The fraction of the time each burr is used to remove each voxel 

is learned from expert training data, and the user can be shown voxels he/she removed 

with the burr opposite the one used by the experts more than a specified fraction of the 

time for that voxel.  

3. Metrics for Suctioning Technique 

Good technique in the use of the suction involves removing bone dust as it is created in 

order to maintain visibility of the bone surface.  In our simulator, particles of bone dust 

are generated as bone is removed, and a suctioning device (a second haptic device held 

in the opposite hand as the drill) is used to remove these particles.  We have included a 

metric that highlights times in which the user was drilling while more than a specified 

number of dust particles obscured the surgical field.  An example of excessive bone 

dust accumulation in the simulator is shown in Figure 4 (left side).   

The coordination of the drill and the suction is an important element of good “two-

handed technique.”  The suction should be kept near the drill when removing bone in 

order to prevent accumulation of bone dust and to properly cool the drilling surface 

(since the suction tool also provides irrigation).  Therefore, another metric identifies 

voxels removed with the drill and suction more than a specified distance apart.     

 

 

      
Figure 4. At left, excessive accumulated bone dust.  At right, mean drill forces as facial nerve approached.  



4. Metrics for Forces and Velocities 

Applying appropriate forces and operating the drill at appropriate velocities are critical 

to safe drilling practice.  In general, the magnitudes of these forces and velocities 

should decrease as vulnerable structures, such as the facial nerve, are approached, as 

shown in Figure 4 (right side), which shows force magnitudes as a function of distance 

from the facial nerve for experts and novices in our training data.  The metrics console 

can highlight all voxels removed while applying force or velocity magnitudes above 

specified thresholds, or just such voxels within specified distances of critical structures.  

The values of these “safety thresholds” for forces and velocities can be assigned by an 

instructor or estimated from the expert training data.    

5. Discussion 

By considering all of these metrics together, as well as those we have previously 

proposed and ones yet to be developed, it is hoped that eventually the virtual instructor 

may be an adequate stand-in for the real instructor throughout much of the learning 

process, greatly reducing the time demands on instructors.  It is therefore essential that 

we be able to establish that the feedback provided by these metrics mirrors that given 

by live instructors.  We have conducted a study in which we have correlated the scores 

returned by these metrics with instructors’ evaluations, the results of which are reported 

in [8].  We are also exploring additional metrics, including analyses of force, positional, 

and velocity profiles using time series classification. 
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